

Long turnover time and large C sequestration potentials in a dry pine forest based on 15-year flux and inventory records

Rafat Qubaja¹, Jose Grünzweig², Eyal Rotenberg¹, and Dan Yakir¹

¹Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.

²Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.

*With the help of the eco-physiological group

The need for carbon sink estimate during dry-land expansion

- 40% of the world's drylands have forests (Bastin et al. 2017)
- Drylands are poorly represented in global efforts to estimate NEP
- Drylands are projected to expand by ~12% by the end of the century.

Forest distribution in drylands (green)

Dryland poorly represented in FLUXNET

Temporal changes in global drylands

Methods

I. Study site: Yatir forest Period 15 years; 2001-2016

- Dominated by Pine-trees
- Planted mostly in 1965
- Size: 2800 ha

II. Carbon stocks based NEP (NEP_{cs}) across 15 years

$$NEP_{CS} = (\Delta C_{soil} + \Delta C_{tree} + C_u + C_{t.m} + C_s)/15$$

- *NEP_{CS}*: Net ecosystem productivity for C
- ∆: is 15 years between 2001-2016
- *u* : grazing
- *t, m*: mortality and thinning
- s: sanitation

III. Carbon fluxes based NEP (NEP_{EC}) continuous over 15 years

$$\sum_{0}^{n=15 \ years} NEP_{EC}$$

Results 1 - NEP_{EC} vs. NEP_{CS}

I. Carbon inventory vs. Eddy covariance: $NEP_{CS}/NEP_{FC} = 91\%$

II. Carbon inventory shows dominance of soil C

Results 2 – Carbon turnover times and sequestration efficiency

C sequestration (C_{pool}) is determined by both flux (F) and turnover time:

Turnover time (τ) = C_{pool}/F_{out}

Turnover times of carbon in terrestrial ecosystems (respiration-based in non-steady state systems).

Semi arid site:

CSE=NEP/GPP=29%; SCSE=
$$\Delta C_{soil}$$
/GPP=10.3%

Carbon sequestration efficiency (CSE) in different climatic zones

Conclusion & Take-home message

In the semi-arid forest site:

- Carbon accumulated mostly in the soil (~71%); and due to dryness has long soil carbon turnover time (59 years; ~x2 the average in other climates)
- The results support a considerable carbon sink potential in semiarid soils and forest plantations (even 10% of semiarid land area similar to the study site could sequester ~20 Pg C/50 years)
- This may have implications for the expanding global drylands area

Thank you!