
Northern Illinois
University

Ramps, Flats, and Rubble Zones: Case Studies of Deformation beneath 
Allochthonous Salt in the Flinders Ranges, South Australia

Lillian R. Lueck and Mark P. Fischer
Northern Illinois University

Institute for
the Study of

NORTHERN ILLINOIS
UNIVERSITY

FLUIDS &
STRUCTURES



(b)

(b)

(a)

(a)

salt

subsalt strata

suprasalt strata

ramps

�ats

feeder

sea �oor

ramp

sea�oor

�at

salt

Figure 3. (a) Seismic data of allochthonous salt sheet 
underlying the Sigsbee Escarpment in the Gulf of 
Mexico. Subsalt �ats (green) and ramps (orange) are 
highlighted for comparison with the schematic 
drawing in (b).  (b) Schematic cross-section of an 
allochthonous salt sheet showing suprasalt and 
subsalt strata. Figure adapted from Hudec and 
Jackson (2006). Flats (green) and ramps (orange) are 
highlighted in the subsalt strata. 

Motivation and Signi�cance
Salt bodies are signi�cant traps for hydrocarbons throughout the world. The viability of 
these traps most often depends on near-salt pinchouts and deformation, many of which 
occur less than 300 m from the salt-sediment interface, a scale below the resolution of 
most seismic data. Deformation beneath allochthonous salt is especially challenging to 
predict because it can originate by carapace slumping or halokinetic processes. Numerical 
models aim to predict the nature and extent of deformation beneath allochthonous salt, 
but o�er constrasting results. Nikolinakou et al. (2018a) predicts substantial subsalt 
deformation, whereas Li and Fischer (2018) show little strain in the subsalt strata (Figure 1).

This project uses �eld work to characterize the deformation beneath allochthonous salt 
and tests the hypothesis (Figure 2; Williams et al, 2019) that the deformation near 
allchthonous salt will vary with structural position (i.e. ramps v �ats, Figure 3). We provide 
new data on deformation adjacent to an allochthonous salt sheet in the Flinders Ranges 
of South Australia, with special emphasis on the contrasting subsalt deformation between 
ramps and �ats. See presentation EGU2020-21148 by Wegmann et al. in this same session 
for additional case studies of subsalt deformation elsewhere in the Flinders.
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Conceptual Model of Deformation Patterns During Submarine Advance of Allochthonous Salt

Figure 2. Deformation patterns associated with allochthonous salt advance hypothesized by Williams et al. (2019). 
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Figure 1. (a) Left; Contours of plastic shear strain in 
the sediments surrounding an advancing salt 
sheet after 78 m.y. and 102 m.y. The model 
predicts high shear strain at distances up to ~2km 
beneath and advancing salt sheet. (b) Right; 
Magnitude and orientation of principle plastic 
strains beneath a salt sheet that has advanced over 
a planar surface. This model predicts subsalt 
shearing will be concentrated in a <50m wide zone 
beneath the salt. Strain orientations imply 
structures with unique orientations will be 
concentrated in this zone.
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Figure 4. Regional geologic map and stratigraphic column of the Tourmaline 
Hill area based on the Umberatana Quadrangle. The black outline represents 
the detailed �eld area in Figure 5. 
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Figure 5. Geologic �eld map of the Tourmaline Hill study 
area. Dashed blue line shows general bedding trends 
based on collected structural data. Dashed red line 
represents the locations of detailed studies of subsalt 
deformation.
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Figure xx. Geologic �eld map of the Tourmaline Hill study 
area. Dashed blue line shows general bedding trends 
based on collected structural data. Dashed red line rep-
resents the locations of detailed studies of subsalt defor-
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Figure 6. Close-up aerial photo and lithostratigraphic column of the transect location in the 
subsalt �at showing the station locations (yellow dots) where data were collected. The transect 
line (purple) is oriented perpendicular to bedding. The transect starts at the salt-sediment 
interface, and spans 180 meters of stratigraphic section through the Tapley HIll Formation.
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Figure 7. Lithostratigraphic column and deformation details of stations 
located along the subsalt �at transect. A) Outcrop example showing the 
abundance of scapolite mineralization and the cross-cutting relationship 
of gouge veins at station SU002-1. B) Well indurated massive siltstone 
with quartz vein at SU002-2. Note that scapolite is not present. C) Detail 
of disharmonic folding (slumping?) within the bedding of SU002-2. D) 
Detail of quartz vein oblique to bedding orientation at Station SU002-3.
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Subsalt Ramp Transect
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Figure 9. Lithostratigraphic and deformation details of stations located 
along the subsalt ramp transect. A) Quartz veins at station SU001-1 
oriented oblique to bedding. B) Siderite veins at station SU001-1 
oriented perpendicular and oblique to bedding. C) Quartz in a siderite 
vein at station SU001-2. D) Quartz veins at station SU001-2 oriented 
oblique to bedding.
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Figure 10. Lithostratigraphic column and deformation details of 
stations located along the subsalt ramp transect. A) Siderite mass 
comprising station SU001- 3. B) Detail of large siderite crystals and 
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Summary

Special Thanks to...

Fractures are generally nonsystematic and abundant near the salt contact and become systematic and less 
abundant with distance away from salt. Scapolite is abundant near the salt-sediment interface, and rare or 
absent in rocks more than 100m away from the salt-sediment interface.

Salt-Sediment Interaction Research Consortium (SSIRC)
American Association of Petroleum Geologists (AAPG)
Geological Society of America (GSA)

Madison Schweitzer, for assisting in the �eld
Mark Rowan, Carl Fiduk, and Josep Anton, for in-�eld discussions/debates
Chris McHugh, for hospitality at Umberatana Station

Subsalt Ramps

-decameter scale folding
-abundant mineralized fractures
-�uid migration (accumulation?)

Subsalt Flats

-strata-bound, decimeter scale folding
-soft-sediment deformation of slumped carapace?
-few mineralized fractures



Prompts for Discussion

References

Numerical models have predicted a phenomenon some call “stem push” near where allochthonous salt emerges 
from a feeder or where salt diapirs are near the surface of the sea�oor. 
  What are some of your thoughts about this concept? 
  Have you seen evidence of it? How would you test for its existence?

What is the rheology/strength of sediments/rocks when allochthonous salt is advancing over them?

Do subsalt deformation patterns correlate to the distribution of ramps and �ats beneath an advancing 
allochthonous salt sheet? Should we expect more or less intense deformation at ramps?
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