A NEW AND EFFICIENT PROCEDURE FOR DISPERSIVE TSUNAMI SIMULATIONS ON SPHERICAL COORDINATES BASED ON A HYPERBOLIC APPROACH

C. ESCALANTE, M. J. CASTRO, J. M. GONZÁLEZ-VIDA, J. MACÍAS, S. LORITO, AND F. ROMANO

Goal: Efficient model implementations for tsunami propagation and coastal-type computations.

Requirements:

- **Simple** models as the hydrostatic Shallow water equations (SW).
- Accounting for **dispersive** effects: Stokes - Airy theory

$$Celerity_{Airy}^2 = gH rac{ anh{(kH)}}{kH}.$$

Hydrostatic Shallow Water equations:

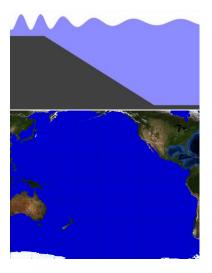
Celerity²_{SW} = gH – Inaccurate.

k: wave-number, H: typical depth.

• Faster Than Real Time (FTRT):

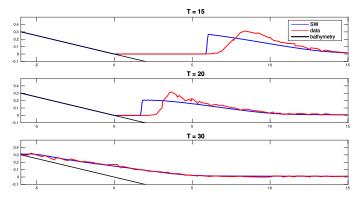
Tsunami-HySEA: Link

- FTRT multi-GPU SW solver
- Hydrostatic non dispersive
- Aim: include dispersive effects



Shallow water -non dispersive- results¹

Solitary wave on a beach, Synolakis, 1987.



Hydrostatic models, such as SW, do not take into account dispersive effects:
 Wrong propagation speed. Inaccurate arrival amplitude and time of the wave

¹J. Macías, M.J. Castro, S. Ortega, C. Escalante, and J.M. González-Vida. "Performance Benchmarking of Tsunami–HySEA Model for NTHMP's Inundation Mapping Activities". In: *Pure and Applied Geophysics* 174.8 (2017), pp. 3147–3183.

Dispersive models

▷ Two prominent families of systems for the simulation of dispersive water waves:

Boussinesq type:

- Boussinesq (1872)
- Peregrine (1967)
- Madsen (1992)
- Lynett (2002,2006,2019)
- Usually contains high-order derivatives in the final model
- Unaffordable complexity for 2D domains.

Non-hydrostatic pressure:

- Casulli et al (1995)
- Bristeau et al (2008)
- Yamazaki et al (2009) (NEOWAVE code)
- Fernández-Nieto et al (2017)
- First order systems
- Simple systems

Non-hydrostatic solvers are capable of solving many relevant features of coastal water waves such as:

- Dispersive water waves propagation
- Shoaling
- Non-linearities

- Refraction
- Run-up
- Run-down

Non-Hydrostatic pressure model

1D domain equations. Bristeau et al, 2008.

$$\partial_t h + \partial_x (hu) = 0,$$

$$\partial_t (hu) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 + hp \right) = (gh + \gamma p) \partial_x H$$

$$\partial_t (hw) + \partial_x (uhw) = \gamma p,$$

$$\partial_x u + \frac{w - w_b}{h/2} = 0, \quad w_b = -\partial_t H - u\partial_x H$$

- Improved dispersion relation valid from intermediate to shallow-waters
- For $\gamma = 2$, the model is similar to Yamazaki *et al* system (NEOWAVE code)
- For $\gamma = 3/2$, the model reduces to the Green-Naghdi system

$$C_{NH}^{2} = gH \frac{1}{1 + \frac{1}{2\gamma} (kH)^{2}}.$$
 We choose $\gamma = 2$

Non-Hydrostatic implementation. Escalante, Castro and Morales¹

Numerical implementation of the previous system. Cons: Pros:

- Efficiently solved for 2D domains on GPU (Escalante et al 2018¹). Hybrid finite-volume finite-difference 2nd order scheme.
- Computational cost: 2 times more expensive than a one-GPU hydrostatic Shallow Water solver.

- The system is not hyperbolic and the numerical scheme involves the solution of linear systems
- The computational cost increases for high-order schemes
- Not amenable for simple multi-GPU implementations

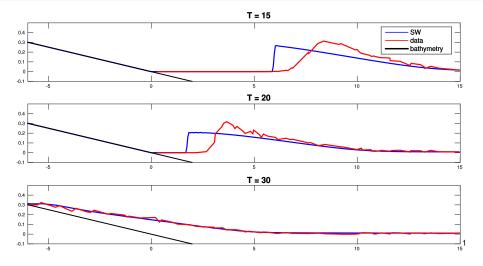
> The **difficulties** arise from the imposition of the divergence condition:

$$\partial_x u + \frac{w - w_b}{h/2} = 0, \quad w_b = -\partial_t H - u \partial_x H.$$

That will lead to developing implicit numerical schemes. Otherwise, a quite restrictive time-step CFL condition must be considered. The same difficulties arise for Boussinesq-type systems.

¹C. Escalante, T. Morales, and M.J. Castro. "Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme". In: Applied Mathematics and Computation 338 (2018), pp. 631-659.

Solitary wave on a plane beach. Hydrostatic approach - SW

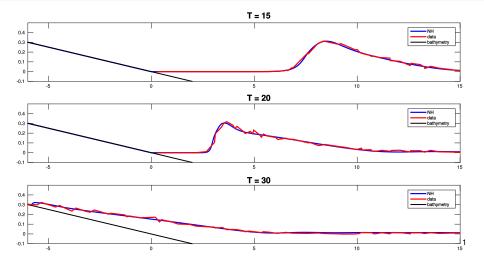


¹"Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data". In: *Coastal Engineering* 158 (2020), p. 103667. ISSN: 0378-3839. DOI: https://doi.org/10.1016/j.coastaleng.2020.103667.

C. ESCALANTE

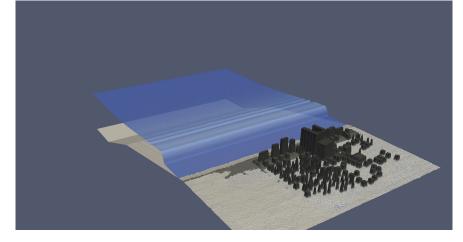
DISPERSIVE WATER WAVES. A HYPERBOLIC APPROACH

Solitary wave on a plane beach. Non-hydrostatic approach



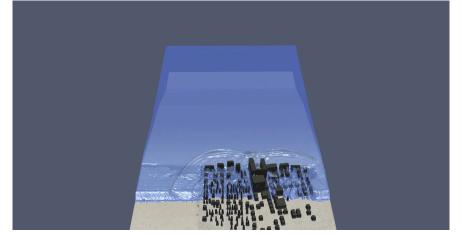
¹C. Escalante, T. Morales, and M.J. Castro. "Non–Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme". In: *Applied Mathematics and Computation* 338 (2018), pp. 631–659.

▷ Benchmark problem. 2nd order hybrid finite-volume finite-difference scheme



¹"Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data". In: *Coastal Engineering* 158 (2020), p. 103667. ISSN: 0378-3839. DOI: https://doi.org/10.1016/j.coastaleng.2020.103667.

▷ Benchmark problem. 2nd order hybrid finite-volume finite-difference scheme

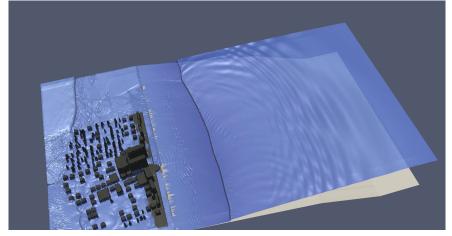


¹"Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data". In: *Coastal Engineering* 158 (2020), p. 103667. ISSN: 0378-3839. DOI: https://doi.org/10.1016/j.coastaleng.2020.103667.

C. ESCALANTE

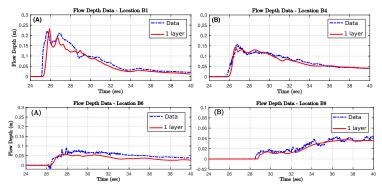
DISPERSIVE WATER WAVES. A HYPERBOLIC APPROACH

▷ Benchmark problem. 2nd order hybrid finite-volume finite-difference scheme



¹"Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data". In: *Coastal Engineering* 158 (2020), p. 103667. ISSN: 0378-3839. DOI: https://doi.org/10.1016/j.coastaleng.2020.103667.

▷ Benchmark problem. 2nd order hybrid finite-volume finite-difference scheme



▷ Computational time: 2-3 times slower than a one-GPU SW simulation.

¹"Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data". In: *Coastal Engineering* 158 (2020), p. 103667. ISSN: 0378-3839. DOI: https://doi.org/10.1016/j.coastaleng.2020.103667.

A novel hyperbolic relaxation non-hydrostatic pressure system¹

A more efficient approach is developed in Escalante, Castro and Dumbser, 2019¹. The key idea is to replace the divergence condition:

$$\partial_x u + \frac{w - w_b}{h/2} = 0, \quad w_b = -\partial_t H - u \partial_x H.$$

by the relaxed equation:

$$\partial_t(hp) + \partial_x(uhp) + hc^2\left(\partial_x u + \frac{w - w_b}{h/2}\right) = 0, \quad w_b = -\partial_t H - u\partial_x H.$$

▷ Here, divergence errors are transported with a wave speed $c = \alpha \sqrt{gH_0}$, H_0 being the typical depth.

▷ The resulting system is **hyperbolic** and the time-step CFL condition is similar to the SW system:

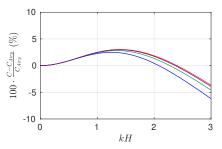
$$\Delta t \leq rac{\Delta x}{\lambda_{\max}}, \qquad \lambda_{\max} = |u| + \sqrt{gh + p + c^2}.$$

¹C. Escalante, M. Dumbser, and M.J. Castro. "An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes". In: *Journal of Computational Physics* 394 (2019), pp. 385 –416. ISSN: 0021-9991.

A novel hyperbolic relaxation non-hydrostatic pressure system¹

Pros:

- The system is hyperbolic: No need of solving linear systems
- Can be discretized by any efficient high-order and explicit numerical scheme.
- Simple and straightforwards multi-GPU implementations
- Preserves the **dispersion relation** from the original non-hyperbolic system
- The same model recovers hydrostatic results (classical SW equations) by setting α = 0.



Relative error of the phase velocity with respect to the Airy theory for different values of the relaxation parameter: $\alpha = 3, 5, 10$ given in blue, green and magenta respectively. **In practice we choose** $\alpha = 3$.

¹C. Escalante, M. Dumbser, and M.J. Castro. "An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes". In: *Journal of Computational Physics* 394 (2019), pp. 385–416. ISSN: 0021-9991.

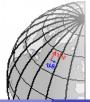
Real-world Tsunami simulations

- The 2D implementation of the non-hyperbolic non-hydrostatic pressure system,
- and the 2D implementation of the hyperbolic non-hydrostatic pressure system,

may suffer the lack of **Earth-curvature** effects for simulations on bigger scenarios.

To account for curvature effects:

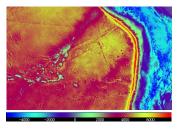
- We consider the non-hydrostatic pressure formulation for spherical coordinates,
- similar to the one given for the NEOWAVE code (Yamazaki *et al*, 2010).
- Then, we propose a similar hyperbolic approach technique to relax the divergence constraint, and obtaining a **hyperbolic model**.



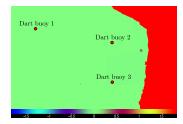
The 2014 Iquique earthquake. Comparison with NEOWAVE

The real test case to solve using a one-GPU implementation

- The domain: west coast of northern Chile. Grid resolution: 1 arc-min.
- Size: 2880 × 1800 = 5184000 cells.
- Wall clock to be simulated: 10000 seconds \approx 2 hours 45 minutes.
- We are interested in compare the Green's funtions obtained in a subfault of $20 \times 20 \ km$ size (corresponding to the 2014 lquique earthquake) time series provided by **Dart buoys** in 3 locations against the computed numerical simulations from the new hyperbolic **non-hydrostatic model**.



Bathymetry



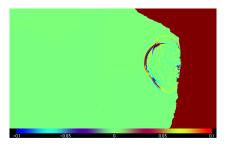
Free-surface initial cond. Dart buoys loc.

The 2014 Iquique earthquake. Comparison with NEOWAVE

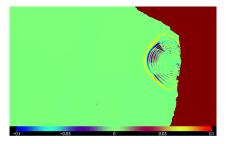
The real test case to solve using a one-GPU implementation

- Hydrostatic SW simulation: α = 0
- Non-hydrostatic simulation: α = 3
- Numerical scheme: Finite-Volume

3rd order TVD Runge-Kutta in time and 3rd order CWENO in space.



Free-surface at time 1500 s. Hydrostatic SW simulation ($\alpha = 0$.)



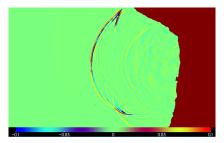
Free-surface at time 1500 *s*. **Non-Hydrostatic hyperbolic** simulation ($\alpha = 3$.)

The 2014 Iquique earthquake. Comparison with NEOWAVE

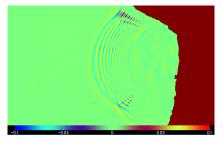
The real test case to solve using a one-GPU implementation

- Hydrostatic SW simulation: α = 0
- Non-hydrostatic simulation: α = 3
- Numerical scheme: Finite-Volume

3rd order TVD Runge-Kutta in time and 3rd order CWENO in space.

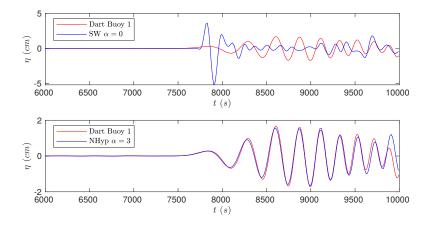


Free-surface at time 4500 s. Hydrostatic SW simulation ($\alpha = 0.$)

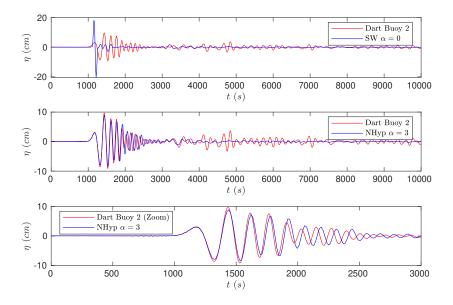


Free-surface at time 4500 *s*. **Non-Hydrostatic hyperbolic** simulation ($\alpha = 3$.)

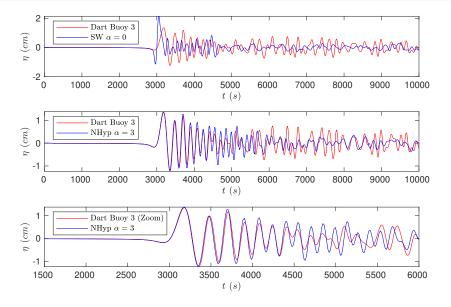
The 2014 Iquique earthquake Time series. Comparison with NEOWAVE



The 2014 Iquique earthquake Time series. Comparison with NEOWAVE



The 2014 Iquique earthquake Time series. Comparison with NEOWAVE



The 2014 Iquique earthquake. Computational effort

Simulated time: 10000 s. Third order scheme

Model	Comput. time	# times FTRT
Hydrostatic SW ($\alpha = 0$)	659.29	15.17
Non-hydrostatic ($\alpha = 3$)	1271.92	7.86

- ▷ Ratio computational times Non-Hydrostatic/SW: 1.93.
- Computations performed with nVIDIA TESLA V100.

Final comments

Conclusions and perspectives

- Towards an operational FTRT dispersive approach.
- Model includes dispersive effects and curvature effects,
- and efficient numerical implementations can be proposed due to its **hyperbolic** nature.
- Dispersive effects without solving linear systems.
- Validation: simple geometries (lab) and complex real cases.
- Computational times: around two times slower than a SW model. Single-GPU.
- Nested meshes and multi-**GPU** implementations can be straightforwardly implemented (Future work).
- Coupling with landslides models (Ongoing work).