Forcings of mass-balance variability
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Introduction — Why are Glaciers Important?

 The Himalaya-Karakoram (HK), covering a glacierized area of ~41,000 km?2 is
one of the largest mountain ranges on Earth.

 HK is surrounded by densely populated countries of south Asia and people
depend strongly on water originating in its river.

 The glaciers over Karakoram are mostly fed by snowfall occurring during
winter months (Nov to April) derived from WDs while glaciers in the
Himalaya receive snowfall from both WDs and ISM.

* Due to the harsh field conditions, limited studies have been attempted to
understand the meteorological forcing of glacier MB in the HK using in-situ
data.

e The primary objective of the present study is to identify the major
meteorological drivers of mass-balance (MB) fluctuation over the HK region.
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Glaciers act as buffer to drought

P
N, e QQ) }/:»M
[ \ < Balkhash
» J f . “Aw -y
— |/ J‘AT lssyk-Kul \°-—f\'\-.::_l,///-’a_, o
LN G>bé7 .~
\ =
x“/ b
WS $
A *®
A ,
s
| Precipitation |
(fmim per month) 7
. 0-1
. -2 S
34 4
5-6 N\
78 SN
gio, )
L
ey 67-107 ! \
108-168 N N ;
Net melt - 108-168 2N
B 169-259 @ 0km A o 169250 @ Net n/len ; N
0k 500 ki A
¢ Glaciers ‘ @Ne‘ "'”p"m” o Clidue Net ptaclpnauon : oo " h” )

Precipitation and glacial melt inputs in an average year (Left).
Precipitation and glacial melt inputs in a drought year (Right).

(Pritchard, Nature, 2017)
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Due to the harsh field conditions, only a few studies have been attempted to
understand the meteorological forcing of glacier MB in the HK using in-situ data.

REgional MOdel (REMO) coupled with a dynamic glacier scheme (REMOygscier) is
capable of reproducing the general pattern of decadal-scale glacier mass changes in
the High Mountain Asia, including the Karakoram Anomaly !

In the present study, annual MBs over the HK region during 1989-2016 are
simulated using REMOg,r for the glacierized fraction of each grid cell.
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Methodology - REMO e,
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Region-wide validation of modelled mass balances
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Left, REMO,,,., simulated mean MB (m.w.e./yr). Right Geodetic MB calculated (m.w.e./yr) for the period 2000-2016.

* reasonable match though model estimates are systematically more negative.

* despite the model limitations, the general consistency with observation




Mean Mass Balance over HK 2000-2016

Mass balance for High
Mountain Asia (2000—
2016). All the datasets
are ASTER product.
(Source: F. Brun et al.,
2017)
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Glacier-wide validation of modelled MIB
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The model is reasonably good at capturing the individual glacier mass balances and
interannual variability for the three glaciers namely, Chhota Shigri, Mera and Pokalde

glaciers with significant correlations.




Fluctuations of modelled mass balance and its drivers

 The correlation matrix (B) reveals
that SF variability has the strongest
correlation with the MB response,
with a correlation coefficient (CC)
of 0.76 (p < 0.001) within our
model assumptions.

e A strong MB sensitivity of ~470% to
changes in SF exist in the HK.

 This is due to a strong effect of SF
on net budget of SW (CC =-0.72, p
< 0.001) through its control on
albedo (CC = 0.88, p < 0.001) and
association with TCC (CC=0.71, p <
0.001)
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Model Parameters Correlations

* The surprisingly dominant role of SF in controlling MB is also verified with a principal-
component analysis (PCA) of the correlation matrix.

* We only consider the variables MB, SF, SW, T, and LHF. We exclude LW and SHF due to

their strong correlations with SW and SHF respectively. Similarly, albedo and TCC have
strong correlations with SF and, therefore, are neglected.
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Figure: Principal Component Analysis (PCA). A) Biplot is showing the result of a PCA of the correlation
matrix of the interannual variability of MB, SF, SW, T, and LHF. B) A screeplot showing the percentage of
correlation accounted for by the principal components.




MB and Snowfall relationship

 The cooperation among the factors amplifies the net effect of SF variability on
MB, resulting in a very large sensitivity of MB to changes in SF.
* Therefore individually MB and SF interannual variability is discussed over

different regions e.g., HK, Himalaya and Karakoram.

* This critical role of the SF variability as a MB driver is, in fact, evident from a

simple and yet striking plot in the time-series analysis.

* The figure given below shows that the role of SF is stronger in the Karakoram
than in the Himalaya.
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Figure: Interannual variability of SF and MB in the HK (left), Himalaya (middle) and Karakoram (right) for the

period 1990-2016
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Conclusion

The simulated MB show an overall negative MB but also reveal regions
with positive MB anomalies especially over the Karakoram.

For the whole HK region, it has been found that MB simulated by model is
able to capture observational variability reasonably well.

The annual glacier MB variability in the HK over the last two and half
decades is essentially driven by the variability of mean annual snowfall.

A relative insensitivity of snowfall to the local temperature changes are
responsible for the Karakoram anomaly.

It is thus apparent that understanding the recent and future climate forcing
and the corresponding response of the HK glaciers require a strong
handle on snowfall variability and its trend.

Thank you for reading it!
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