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The Acidity of Atmospheric Particles
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Particle acidity drives
aerosol processes and
environmental impacts:

* Mass - partitioning
of semivolatile ions,
formation of
NH,NO,, (NH,),SO,,
etc.

e Dry Deposition of
reactive nitrogen and
other nutrients
(metals, P) that
affect ecosystem
productivity

Links between acidity,
sensitivity of PM to
emissions and dry
deposition is not clear.
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Acidic aerosol is everywhere
pH varies alot

Pye et al., ACP, 2020
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pH and observed partitioning of nitrate and
ammonium follow “S - curves”
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Consistency between predicted and observed partitioning of both species affirms
that predicted acidity levels with models are reasonable.



S-curves are explained by theory
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S-curves are explained by theory
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\Xhen is PM sensitive to NH; and HNO; levels?
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\Xhen is PM sensitive to NH; and HNO; levels?
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\Xhen is PM sensitive to NH; and HNO; levels?
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\X/hen is PM sensitive to NH; and HNO; levels?
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\X/hen is PM sensitive to NH; and HNO; levels?
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\Xhen is PM sensitive to NH; and HNO; levels?
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\X/hen is PM sensitive to NH; and HNO; levels?
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Application of framework to locations

Aerosol pH
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Cabauw Netherlands (05/12-06/13):

* Aerosol is exclusively in the HNO,-
sensitive regime.

* NH;-reduction policies less efficient
for PM reduction.

* NO, (and SO,) reduction policies
most efficient for PM reduction.

Southeas United States (06/13-07/13):

* Aerosol is exclusively in the NH;-
sensitive regime.

* NH; (and SO,) reduction policies
efficient for PM reduction.

* NO, reduction policies not efficient

for PMreduction. | = . acp 2019)



https://doi.org/10.5194/acp-20-3249-2020

Aerosol pH
N B O R N WAL O
3 1 1 1 1 1 1 I

Aerosol pH
N R O R N®W A GO

Application of framework to locations

(a) For all year

HNO; e
| sensitive

1 Insensitive

NH; sensitive

0.1 1 10 100
Liquid Water Content (ug m3)

(c) For winter

71 HNOj sensitive

dinsensitj

NH; sensitive

1 10 100
Liquid Water Content (ug m3)

o
[

Aerosol pH
N B O R N WAL O
1 1 1 1 1 1 1 1 1 1

Aerosol pH
N R O R N WSO OO

(b) For summer

1 HNO; sensitive

4 Insensitive

NH; sensitive

0.1 1 10 100
Liquid Water Content (ug m3)

(c) For spring

1 sensitive

1 Insensitive

NH; sensitive

T LI ) T

1 10 100
Liquid Water Content (ug m3)

$o
=

Tianjin China:

e Aerosol is dominated
by the HNO,-sensitive
regime.

* NH;-reduction
policies less efficient
for PM reduction
(except in summer).

* HNO, (and SO4)
reduction efficient for
decreasing PM
throughout the year

Zhao et al. (in review)



Effects of pH on dry deposition of N

Some facts about reactive nitrogen:

* Largely dominated by the inorganic reduced (NH,/NH;) and oxidized
(NO,/HNO,) constituents.

* In the absence of wet deposition, dry deposition determines the lifetime
and deposition pattern of reactive nitrogen!

e Lifetime determines concentration in boundary layer.

 The dry deposition velocity of both species varies dramatically if it is in the
aerosol or gas phase (~10 times).

Realization:

* Acidity affects all the above! ...
H,50,

’ HNO,
SO,

NO,

Nenes et al., ACPD (2020)
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pH effects on dry deposition of NH;', HNO,'
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pH effects on dry deposition of NH;', HNO,'

\t\ _____________ s

0.75 | gas partitioning unimportant (£>0.9)
' Dry deposition is slow (aerosol rate)

o
(0

€N03, ENHa

0.25 +

Nenes et al. (in prep)



pH effects on dry deposition of NH;', HNO,'
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pH effects on dry deposition of NH;", HNO,T
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pH effects on dry deposition of NH;", HNO,T
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Dry deposition acidity regimes
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Impacts of acidity on deposition velocity
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Cabauw Netherlands (05/12-06/13):

Aerosol is almost exclusively in the
HNO,-slow regime.

NH; deposits rapidly.
NO; accumulates in the boundary
layer and causes nitrate-rich haze!

NH; is the lowest concentration in
the BL.

Southeast US (06/13-07/13):

Nitrate rapidly deposits, low conc.
NH; deposits sometimes slowly.

NH; would tend to accumulate
more in the boundary layer, and

affect pH. Nenes et al., ACPD (2020)
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Reduced deposition velocity increases aerosol nitrate
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Acidity effects on deposition
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Nenes et al., ACPD (2020)
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Acidity effects on deposition
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Some final take-home messages

Aerosol acidity control its composition, PM sensitivity to
precursors, bioavailability and deposition rates.

Thermodynamic analysis brings out natural dependence of
PM sensitivity and deposition velocity to pH and LWC.

First identified regimes of slow deposition of NH; and
HNO3, and insensitivity of PM to NH;, HNO; changes.

For mildly acidic aerosol (e.g., Tianjin), PM most
effectively responds to nitrate (and sulfate) reductions.

In mildly acidic conditions, slow depositon of nitrate
increases its concentration in aerosol by up to 10x. This
may cause the rapid increase and high concentration
of nitrate during why haze episodes in Tianjin, etc.

Ammonia tends to respond less to acidity changes, unless
the aerosol is extremely acidic (pH < 1).
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