EPFL

Aerosol acidity as a driver of aerosol formation and nutrient deposition to ecosystems

Athanasios (Thanos) Nenes^{1,2}, Spyros Pandis^{2,3}, Maria Kanakidou⁴, Ted Russell⁵, Shaojie Song⁶, Petros Vasilakos⁵, Rodney Weber⁵

> ¹LAPI/ENAC EPFL, Switzerland ²Foundation for Research and Technology, Greece ³University of Patras, Greece ⁴University of Crete, Greece ⁵Georgia Institute of Technology, USA ⁶Harvard University, Greece

EGU Meeting (#shareEGU20), Session AS 2.14 8 May, 2020

European Research Council Established by the European Commission

The Acidity of Atmospheric Particles

Pye et al., ACP, 2020

Particle acidity drives aerosol processes and environmental impacts:

- Mass partitioning of semivolatile ions, formation of NH₄NO₃, (NH₄)₂SO₄, etc.
- Dry Deposition of reactive nitrogen and other nutrients (metals, P) that affect ecosystem productivity

Links between acidity, sensitivity of PM to emissions and dry deposition is *not* clear.

Acidic aerosol is everywhere pH varies alot

Pye et al., ACP, 2020

pH and **observed** partitioning of nitrate and ammonium follow "S - curves"

Consistency between predicted and observed partitioning of both species affirms

that predicted acidity levels with models are reasonable.

S-curves are explained by theory

$$\begin{array}{ccc} \mathrm{HNO}_{3(\mathrm{g})} \leftrightarrow \mathrm{HNO}_{3}, & K_{H} \\ \mathrm{HNO}_{3} \leftrightarrow \mathrm{NO}_{3}^{-} + \mathrm{H}^{+}, & K_{a} \end{array} \right\} \quad \varepsilon(\mathrm{NO}_{3}^{-}) = \frac{\mathrm{NO}_{3}^{-}}{\mathrm{HNO}_{3} + \mathrm{NO}_{3}^{-}} = f(\mathrm{pH})$$

$$\varepsilon(NH_{4}^{+}) = \frac{\frac{\gamma_{H^{+}}}{\gamma_{NH_{4}^{+}}} \frac{H_{NH_{3}}}{K_{a}} [H^{+}] W_{i} RT}{1 + \frac{\gamma_{H^{+}}}{\gamma_{NH_{4}^{+}}} \frac{H_{NH_{3}}}{K_{a}} [H^{+}] W_{i} RT} \qquad \Phi = \frac{\gamma_{H^{+}}}{\gamma_{NH_{4}^{+}}} \frac{H_{NH_{3}}}{K_{a}} RT \qquad \varepsilon(NH_{4}^{+}) = \frac{\Phi[H^{+}] W_{i}}{1 + \Phi[H^{+}] W_{i}} \qquad \text{ammonium}$$

Gas-particle partitioning of nitrate, ammonium depends on $[H^+]$ and W_i

Meskhidze et al., GRL (2003); Guo et al., ACP (2017); Nenes et al., ACP (2019)

S-curves are explained by theory

Gas-particle partitioning of nitrate, ammonium depends on $[H^+]$ and W_i

Meskhidze et al., GRL (2003); Guo et al., ACP (2017); Nenes et al., ACP (2019)

<u>Nenes et al., ACP (2019)</u>

Nenes et al., ACP (2019)

Nenes et al., ACP (2019)

Application of framework to locations

Cabauw Netherlands (05/12-06/13):

- Aerosol is exclusively in the HNO₃sensitive regime.
- NH₃-reduction policies *less efficient* for PM reduction.
- NO₃ (and SO₄) reduction policies most efficient for PM reduction.

Southeas United States (06/13-07/13):

- Aerosol is exclusively in the NH₃sensitive regime.
- NH₃ (and SO₄) reduction policies *efficient* for PM reduction.
- NO₃ reduction policies not efficient for PM reduction. Nenes et al., ACP (2019)

Application of framework to locations

 \odot

Tianjin China:

- Aerosol is dominated by the HNO₃-sensitive regime.
- NH₃-reduction policies *less efficient* for PM reduction (except in summer).
- HNO₃ (and SO4) reduction efficient for decreasing PM throughout the year

Zhao et al. (in review)

Effects of pH on dry deposition of N

Some facts about reactive nitrogen:

- Largely dominated by the inorganic reduced (NH₄/NH₃) and oxidized (NO₃/HNO₃) constituents.
- In the absence of wet deposition, dry deposition determines the *lifetime* and *deposition pattern* of reactive nitrogen!
- Lifetime determines concentration in boundary layer.
- The dry deposition velocity of both species varies dramatically if it is in the aerosol or gas phase (~10 times).

Nenes et al. (in prep)

Nenes et al. (in prep)

Nenes et al. (in prep)

pH effects on dry deposition of NH_3^T , HNO_3^T

Dry deposition acidity regimes

Impacts of acidity on deposition velocity

Cabauw Netherlands (05/12-06/13):

- Aerosol is almost exclusively in the HNO₃-slow regime.
- NH₃ deposits rapidly.
- NO₃ accumulates in the boundary layer and causes nitrate-rich haze!
- NH₃ is the lowest concentration in the BL.

Southeast US (06/13-07/13):

- Nitrate rapidly deposits, low conc.
- NH₃ deposits sometimes slowly.
- NH₃ would tend to accumulate more in the boundary layer, and affect pH.
 Nenes et al., ACPD (2020)

Reduced deposition velocity increases aerosol nitrate

Acidity effects on deposition

Acidity effects on deposition

Some final take-home messages

- Aerosol acidity control its composition, PM sensitivity to precursors, bioavailability and deposition rates.
- Thermodynamic analysis brings out natural dependence of PM sensitivity and deposition velocity to pH and LWC.
- First identified regimes of slow deposition of NH_3 and HNO_3 , and insensitivity of PM to NH_3 , HNO_3 changes.
- For mildly acidic aerosol (e.g., Tianjin), PM most effectively responds to nitrate (and sulfate) reductions.

In mildly acidic conditions, slow depositon of nitrate increases its concentration in aerosol by up to 10x. This may cause the rapid increase and high concentration of nitrate during why haze episodes in Tianjin, etc.

Ammonia tends to respond less to acidity changes, unless the aerosol is extremely acidic (pH < 1).</p>

EPFL

Thank you !!

For more information, please visit http://lapi.epfl.ch - @LAPI_epfl http://cstacc.iceht.forth.gr - @cstacc

European Research Council Established by the European Commission