





### Al-rich industrial residues for mineral binders in ESEE region

Katarina Šter and Sabina Kramar

- Huge amounts of various Al-rich residues (steel slag, red mud, ash, landfills of bauxite mines) with a low recycling rate or landfilled in RIS countries present a high secondary mineral resource potential.
- A promising way of recycling these waste mineral materials is the synthesis of sustainable mineral binders with high Al content, which can be further used as an environmentally friendly construction material.



### Network of interested parties

### Mapping and valorisation

Potential for low-CO, mineral



### Matchmaking between Al producers/holders and mineral end user

### **Knowledge sharing** and education





Project duration: March 2019 - February 2022 | Project budget: 932,355,00 EUR Project Coordinator: Slovenian National Building and Civil Engineering Institute (ZAG)










































# Al-rich industrial residues for mineral binders in ESEE region



Katarina Šter and Sabina Kramar



ZAVOD ZA GRADBENIŠTVO SLOVENLIE SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING INSTITLITE

# **Background and motivation**

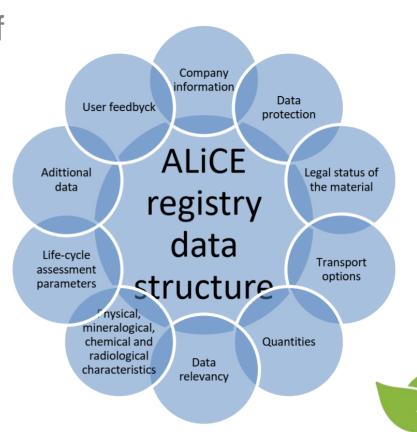
- Huge amounts of various Al-rich residues (steel slag, red mud, ash, landfills of bauxite mines) with a low recycling rate or landfilled in RIS countries present a high secondary mineral resource potential.
- A promising way of recycling these waste mineral materials is the synthesis of sustainable mineral binders with high Al content, which can be further used as an environmentally friendly construction material



# **RIS-ALICE** project

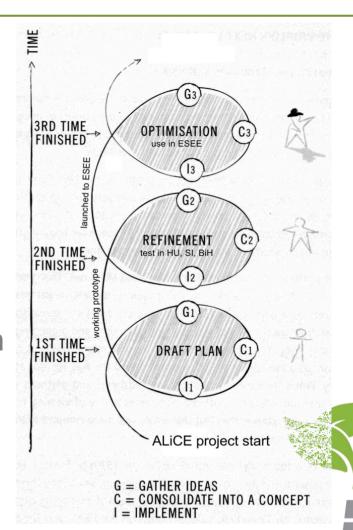
- multidisciplinary and complementary consortium
- 15 partners: three sides of the knowledge triangle (academia, RTO and industry)
- waste users/producers
- 7 countries
- 5 RIS countries: SI, HU, BiH, MK, SR




### **Network of interested parties**

- waste users/producers,
- mineral raw materials processing sector,
- construction sector
- national and EU decision makers,
- R&D and education sector
- waste transportation sector,
- permitting authorities,
- research institutes,
- policy makers,
- waste recycling plants,
- investors,
- and many others




# Matchmaking between Al waste users/producers

- Contribute to the creation of local and regional industrial ecosystems
- Long-term activity will be enabled via the development of an Al-rich residues registry



### **Objective of RIS-ALICE registry**

- Registry is a part of the RIS-ALiCE project.
- To link holders of Al-rich waste and residues, and potential consumers of such waste.
- To serve as a tool to help cement plants and other potential users to evaluate the potential supply of such materials in the future.
- To ease valorization of Al-rich wastes for their potential use for cement production.



### Holders of Al-rich residues will be able to

- easily put their waste on the "market",
- have a complete control over which data to contribute and what can be done with it,
- chose who exactly can modify their data.









### Cement plants will be able to

- easily search for potential supply of Al-rich materials,
- quickly valorize such materials for production of Alrich cements,
- make better decisions regarding future Al-rich cement production.

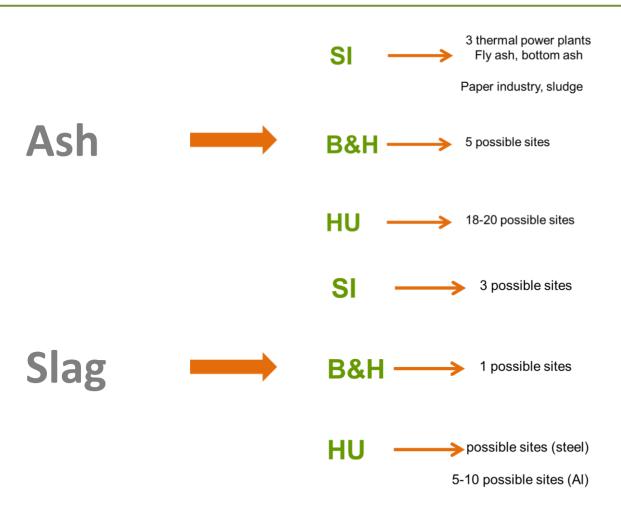




## Mapping and valorisation

- Al-rich residues in the ESEE region (slag, ash, red mud, mine waste)
- Potential for low-CO<sub>2</sub> mineral binder production
- Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods








### Al-rich residues in the ESEE region



### Al-rich residues in the ESEE region







### Knowledge sharing and education

- For students and professionals in the field of geology, mining, construction and related technology and industry
- Raising awareness of the topic across the wider community





# Thank you for your attention









































http://ris-alice.zag.si https://eitrawmaterials.eu/



alice.eit@zag.si