NUMERICALLY SIMULATED GROUNDWATER AGE DISTRIBUTIONS WITHIN **COMPLEX FLOW SYSTEMS AND DISCRETE FRACTURE NETWORKS**

¹Department of Geology and Geological Engineering, Université Laval, Québec, Québec, Canada J. Molson¹, E.O. Frind² ²Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON

john.molson@ggl.ulaval.ca

Fig. 3 Application to well-head protection zones

55000 Distance (m) Discussion:

60000

50000

Age simulations provide insight into complex flow systems

Dispersivities control age mixing, the Lichtner (2002) formulation is preferred

References:

- Janos, D., Molson, J., Lefebvre, R., Regional groundwater flow dynamics and residence times in Chaudière-Appalaches, Québec, Canada: Insights from numerical simulations, Canadian Water Resources Journal, Special Issue : Quebec PACES Projects, https://doi.org/10.1080/07011784.2018.1437370, 2018.
- Lichtner, P.C., Kelkar, S., & Robinson, B., New form of dispersion tensor for axisymmetric porous media with implementation in particle tracking. Water Resources Research, Vol. 38/8, 2002.
- Molson, J.W., E.O. Frind, On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection, J. Contaminant Hydrology, Vol. 127, p76–87, doi:10.1016/j.jconhyd.2011.06.001, 2012.
- Molson, J.W. and E.O. Frind, FLONET/TR2 User Guide, A Two-Dimensional Simulator for Groundwater Flownets, Contaminant Transport and Residence Time, Université Laval, 2020.

Context

UNIVERSITÉ

AVAI

Age simulations can be applied in a variety of contexts including defining capture zones for pumping wells, characterizing fractured rock aquifers, and for improved understanding of flow systems and geochemical evolution.

Methodology

We apply the finite element models FLONET/TR2 (in the 2D vertical plane; Molson & Frind, 2020) and HEATFLOW (in 3D systems), using the standard advection-dispersion equation with an age source term. The governing equations for mean age (A) or residence time, including advective-dispersive age mixing within a porous medium can be written as:

$$\frac{\partial}{\partial x_i} \left[D_{ij} \frac{\partial A}{\partial x_j} \right] - v_i \frac{\partial A}{\partial x_i} + 1 = 0$$

where x are the spatial coordinates (x,y) (L), y is the average linear flow velocity (L/T), D_{ii} is the hydrodynamic dispersion tensor ($L^{2/T}$), A is the mean age (T), and the +1 source term expresses the growth of the age mass at the rate of 1 day/day as it moves along its flowpath in the forward (downgradient) direction. A Type-1 boundary condition where A=0 is applied along recharge zones. Life expectancy uses a similar equation in a reversed flow field. The codes are available without charge for research use; please contact authors ...

Fig. 1 3D model of groundwater age in a multi-aguifer system

Fig. 2 Groundwater age in a discrete fracture network