Simultaneous Bayesian Estimation of Complex Non-planar Earthquake Fault Geometry and Spatially-variable Slip from Geodetic Data

Motivation:

- Faults in nature are complex and often include an en echelon segments or are curved or warped at different spatial scales
- However, they are usually modeled as one or more planar fault segments, leading to slip singularities and unphysical gaps between fault segments
- Better spatial resolution of InSAR/GPS data can help in resolving

Key implementation:

• Estimate non-planar fault geometry parameterized using a set of polynomials

Rishabh Dutta¹, Sigurjón Jónsson¹, and Hannes Vasyura-Bathke^{1,2}

 ¹ King Abdullah University of Science and Technology (KAUST), Saudi Arabia
² University of Potsdam, Germany

Methodology – see appendix

.

Estimated non-planar fault geometry with its 95% confidence interval at Planes A, B and C compared with Slab1.0 and previous studies

EGU2020 – SM2.1 21277 Email: rishabh.dutta@kaust.edu.sa

Non-planar fault geometry estimated simultaneously with slip distribution

Conclusions

- Along-strike and down-dip variations in fault-dip can be estimated from geodetic data
- In the case of the Tohoku-Oki earthquake, we find a fault geometry that is mostly in agreement with the slab interface model, but differs from several previous studies
- The resulting fault geometry shows both significant along-strike and down-dip variations in fault dip
- The maximum slip was found to be about ${\sim}60$ m and the down-dip variations in dip 7^o to 22^o with depth

Resources

• Python codes for SMC sampling: Github repository (<u>https://github.com/rishabhdutta/SMC-python</u>)

Methodology

Fault model parameters = **Geometrical parameters** + down-dip variations Along-strike variations (ii) $S_1 < 0$ X [units] Y [units] (i) $0 < S_1 < 2$ D₂ value - 0.01 Y [units] 0.0575 0.105 (iii) $S_1 > 2$ **(b)** X [units Y [units] D₁ value (ii) - 7.25 (iii) (a)

Polynomial parameters – S_1 , D_1 , D_2 , ...

Slip parameters ↓

Slip values superposed on Triangular dislocation elements (both dip-slip and strike-slip components) **Forward model** – triangular dislocation placed within isotropic elastic halfspace

Bayesian sampling – Sequential Monte Carlo technique

Bayesian inference:

- Model parameters relate stochastically to the data (InSAR/GNSS)
- A priori information about model parameters (slip smoothness prior + geometrical prior)
- Modelling and data errors used
- Obtain uncertainties and trade-offs of the estimated model parameters

