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Uncertainty quantification,
interpretability, and
explainability




uncertainty matters



Two business models, which one would you go for: (a) or (b)?
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Uncertainty quantification increases the quality of the decisions
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Conclusions

(2) Plausibility and
interpretability of inferences
Models should not only be
accurate but also credible,
incorporating the physics
governing the Earth system.

(3) Uncertainty estimation

Models should define their
confidence and credibility.

moreno@dkrz.de



Definitions

e Black-box models
Humans cannot understand the cause of the decisions: knowing the value of the
parameters is not enough to infer what is going on and/or underlying
assumptions/limitations are unknown.

The models are still black-boxes but we use some methods (based on surrogate
models) a posteriori to try to infer where/why the predictions came from.

e Interpretable models or Glass-box models
Humans can understand the cause of a decision: knowing the value of the
parameters helps and the underlying assumptions/limitations are known.
Examples: linear models, logistic regression, decision trees, naive Bayes, and
k-nearest neighbors.
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Fundamental problems (l):
algorithms are designed for interpolation, not extrapolation
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classical example:

we develop an algorithm that distinguishes pictures of dogs and
cats by exposing it to many labelled pictures of dogs and cats
and let it find what are the main features
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90% cat
10% dog

40% cat

The dog in this picture
looks a bit like a cat
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what if we show to the model a picture of something that it has
never seen before?
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zero guarantee of a
meaningful result (it
can also be 40/60,
for instance), but the
algorithm always
seem to be very
confident!
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90% cat
10% dog

solution

wnae  + sOMething

l.e., error bars,
confidence
intervals,...
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solutions: conformal predictors

Maria Navarro: Quantifying uncertainty in

Machine Learning predictions | PyData...
PyData * 1.3K views * 6 months ago

Introduction to conformal predictions
Lrgate be srmlwrns pwads loame
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It produces a prediction region around the prediction that is agnostic about the
noise distribution

For classification or regression and suitable for online assimilations
Assumption: samples are exchangeable

Library: nonconformist extension scikit-learn
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another classification example
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DECISION
BOUNDARIES

(a) Example four-class model
from closed set point of view.
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Original

Closed Spacg
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??

(a) Example four-class model (b) Zooming out to show
from closed set point of view. some open space.
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a new input

here will get

a prediction

too, even if
the algorithm
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(a) Example four-class model (b) Zooming out to show
from closed set point of view. some open space.
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a regression example
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pred Iction dots are the input, for
—— truth instance, observations
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pred|Ct|0n dots are the input, for
—— truth instance, observations
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Two types of uncertainty

Aleatoric: “what is the next outcome of tossing a coin?” it does not
reduce with more input data, it is the noise in the data.

Epistemic: “How much do | believe the coin is fair?” it is related to the

model’s belief after seeing the sample, it does reduce when having
more data.
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solutions: Gaussian Processes, Monte Carlo
dropout, deep ensembles, dropout ensembles,
and quantile regression

Florian Wilhelm: Are you sure about that?!

Uncertainty Quantification in Al | PyData...
PyData * 162 views * 1 month ago

onDE & PyData Berlin 2019 2
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Florian Wilhelm oV
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Actually, there is a 3rd type of uncertainty:

Distribution shift: “Am [ still flipping the same coin?” it is related to
changes of the underlying quantity of interest, we assume that training
and test data are i.i.d. from the same distribution but data drifta in time,
or the labeller changed.
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e training data are not longer representative if the system has changed
e the accuracy of the trained model definitely decreased under data shift



Fundamental problems (ll):
algorithms relying on spurious correlations (leakage)

moreno@dkrz.de



Pixels area
that the
algorithm took
as most
relevant for the
Horse classified as a horse decision

because the model learnt to
read the image caption
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(a) Husky
classified as
wolf

. 4

(b) Pixels area
that the
algorithm took
as most
relevant for the
decision
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(a) Husky
classified as
wolf

(b) Pixels area
that the
algorithm took
as most
relevant for the
decision

The algorithm was
developed to
distinguish wolves from
huskies by exposing it
to pictures of wolves
and huskies but it just
become an accurate
snow identifier
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solution: Explainable Artificial Intelligence (XAl)

To explain black boxes decisions a posteriori in order to gain insights into
the algorithm presumptions, biases, and reasoning.

XAl helps to determine “saliency”: to figure it out what part of the image
was considered relevant

XAl also possible for time series and tabelled data, not only for images,
there are many libraries

Layer-wise Local Interpretable
Model-agnostic Explanation (LIME)
o
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Cloud Fraction

more solutions to leakage:

Partial Dependence Plot
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Fuchs et al. 2018 (ACP)

They are just sensitivity analysis

Easy to implement, many libraries: eli5, PDPBox,...
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Shapley values

# summarize the effects of all the features
shap.summary_plot(shap_values, X)
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SibSp
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Parch

-0.4 -02 0.0 0.2 0.4 0.6
SHAP value (impact on model output)
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XAl techniques are not the ultimate solution: they rely on surrogate
models, which bring their own assumptions, limitations, and are also
error-prone, an interpretable model is always more trustable

RESEARCH-ARTICLE FREE ACCESS

Fooling LIME and SHAP: Adversarial Attacks on Post

hoc Explanation Methods
¥ in & f

Authors: Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, Himabindu Lakkaraju

Authors Info & Affiliations

Publication: AIES '20: Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society e February 2020
e Pages 180—186 e https://doi.org/10.1145/3375627.3375830

moreno@dkrz.de



Fundamental problems (lll):
we are too optimistic (accuracy is not enough)
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Performance metrics to evaluate the algorithm skills

how often Receiver Operating
(accuracy or true positives, precision, ROC fharav"te"s,t'c curve (,ROC)
AUC, confusion matrix,... — Wethod 1

— Method 2
— Method 3|

used in classification)

o
=

or

o
=)

how well
(R?, RMSE, log loss,... used in regression)

o
~

o
N

TRUE POSITIVES
(SENSITIVITY)

the predictions matched the correct target
during the testing/validation phase.

o
=)
o

02 04 06 0.8 10

FALSE POSITIVES
(1 - SPECIFICITY)

Libraries: sklearn.metrics, tf.keras.metrics,... moreno@dkrz.de



but to optimise your algorithm to achieve high accuracy is not enough, it

might be more relevant Why the model was correct than how much

correct it is (remember the husky example, the model was very
accurate, but in predicting snow!)

“‘We do not want a correct model, we want understanding”

(Doshi-Velez and Kim 2017)
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Best practices (l):
Hybrid models

Ty

machine learning :
physical models
models
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machine learning

models physical models

Lightweighting/simplifying/speeding up physical models

e improve parametrizations
e analysis of model-observations mismatch
e emulation



machine

learning models physical models

Domain knowledge can guide/optimize the pure data-driven methods

avoid inconsistencies

design the architecture

constrain the cost (or reward) function

physically based data augmentation: expansion of the data set
for undersampled regions



Example: lakes simulations to predict temperature from depth measurements

feature prediction

Depth | Temp
(m) = (°C)

Physical model
example: Temp,,, = Temp , + sun, - wind, - upwelling

given that we measured T__ . = =13°C



o 28 o oHy
feature prediction
Moderate model skills
Depth Temp G 24 f and of course zero
(m) (°C) o inconsistency
s B2
(o
2 -
1.8
1.6 : : | ' '
0 0.2 0.4 0.6 0.8
PhySicaI mOdeI Physical Inconsistency

example: Temp,,, = Temp , + sun, - wind, - upwelling

given that we measured T__ . = =13°C



feature prediction

Depth
(m)

Temp
(°C)

Neural Network (NN)

RMSE (°C)

28 r

N
N
T

N
N

1.8

1.6

¢ Py
Better model skills but
the inconsistency
spreads
{ NN,
(; 0.12 0.14 0.16 0.18

Physical Inconsistency

might allow negative densities and other

inconsistencies (conservation laws)!




features  prediction

Depth Density Temp
(m) (/L)  (°C)

data augmentation/feature engineering:
include new features driven by physical
knowledge and then run the NN



6T ®ppy _
feat dicti Even better model skills
eatures preaiction 2sr; and a bit less
] = inconsistency but it still
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(m) (g/L) (°C) | 2,,}
o NN,
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1.8
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data augmentation/feature engineering: Physical Inconsistency

include new features driven by physical
knowledge and then run the NN



features  prediction

Depth Density Temp
(m) (/L) = (°C)

v/
X

/

physically driven feature + NN + constrain
loss function: denser water must be deeper



Totally consistent and

high model skills!

features  prediction

Depth | Density Temp
(m) (giL) | (°C)
v
X

/

3

28
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RMSE (°C)
N
N

1.8

1.6

N
N
T

® PHy Great model
performance (~1°C less

error) and totally
consistent
NN
"PGNNO
PGNN
0 0.2 0.4 0.6 0.8

Physical Inconsistency

physically driven feature + NN + constrain
loss function: denser water must be deeper




Best practices (ll):
put your model on diet
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Put your model on diet before the training to prevent leakage

identify and remove snow (see LIME example), captions (see
LRP example),...

most neural networks are over-parameterized. Many trained

weights have little impact on overall accuracy and can be
removed, it is called pruning, use techniques like MC dropouts
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Best practices (lll):
call a human!
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Calculate the confidence with uncertainty quantification techniques
(see previous slides)

conformal predictors
MC dropouts

Deep Ensembles
Quantile regression

and implement fallbacks if the confidence of the prediction is low.
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Just great!

Vincent Warmerdam: How to Constrain
Artificial Stupidity | PyData London 2019

PyData « 3K views * 6 months ago

GOTO 2018 - Computers are Stupid:

Protecting "Al" from ltself « Katharine Jarmul
GOTO Conferences @ 1.3K views * 12 months ago
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Interpretable
Machine Learning

A Guide for Making
Black Box Models Explainable

X
A boi ';?
4) > o

@ChristophMolnar
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Explainability added vaue

COLORADO STATE
\WY%7) UNIVERSITY

Viewing forced climate patterns
through an Al Lens

Elizabeth A. Barnes
Associate Professor
Colorado State University

December 11, 2019 @ MQM::!A"P;IE

AGU 2019

>

o) 0:01/13:04

>l

"Viewing Forced Climate Patterns through an Al Lens", Dec. 11, 2019.
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Bonus track: do we lose performance?

Please Stop Doing "Explainable" ML - Cynthia

P Rudin
T e — The Berkman Klein Center for Internet & Society *
1.3K views * 8 months ago

Bad Stuff is Happening EL&:L-H

DAPA Explainable Al - Performance vs. Explainability

New Learning Techniques (today)
Approach

Explainability
(notional)

Neural Nets

Create a suite of Graphical
machine learning Deep
techniques that Learning
produce more
explainable models,

while maintaining a

Bayesian
Belief Nets -
R
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°
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Prediction

high level of Stafistical
learning odels
performance Explainability
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