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Abstract

• Nonlinear analysis in a rotating Rayleigh-Bernard system of
electrical conducting fluid is studied numerically in the
presence of externally applied horizontal magnetic field
with rigid-rigid boundary conditions.

• This research model is also studied for stress free boundary
conditions in the absence of Lorentz and Coriolis forces.

• This DNS approach is carried near the onset of convection
to study the flow behaviour in the limiting case of Prandtl
number.

• The fluid flow is visualized in terms of streamlines, limiting
streamlines and isotherms. The dependence of Nusselt
number on the Rayleigh number, Ekman number, Elasser
number is examined.
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Outline

• Introduction
• Physical model
• Governing equations
• Methodology
• Validation

– RBC – 2D
– RBC – 3D

• Results
– RBC
– RBC with magnetic field (MC)
– Plane layer dynamo (RMC)

3



Introduction
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• Nonlinear interaction between convection and magnetic
fields (Magnetoconvection) may explain certain prominent features
on the solar surface.

• Yet we are far from a real understanding of the dynamical coupling
between convection and magnetic fields in stars and magnetically
confined high-temperature plasmas etc. Therefore it is of great
importance to understand how energy transport and convection are
affected by an imposed magnetic field: i.e., how the Lorentz
force affects convection patterns in sunspots and magnetically
confined, high-temperature plasmas.

• Magnetoconvection exhibits a rich variety of behavior when the
magnetic Prandtl number (Pm) is small. This condition is satisfied in
the solar convection zone near the sunspot and magnetically
confined, high temperature plasmas.

• Convection in planetary cores and stellar interiors often occurs in
the presence of strong rotational and magnetic constraints.



Motivation
• To link the dynamics of geophysical fluid flows with the

structure of these fluid flows in physical space and the
transitions of this structure arising in the system due to the
following parameters:
✓ Rayleigh Number, Ra

✓ Nusselt Number, Nu

✓ Chandrasekhar Number, Q

✓ Taylor Number, Ta

✓ Thermal Prandtl Number, Pr

✓ Magnetic Prandtl Number, Pm

• To reproduce “Experiments on Rayleigh-Benard convection, 
magnetoconvection and rotating magnetoconvection in 
liquid gallium”, J. M. AURNOUy AND P. L. OLSON,  J. Fluid Mech. 

(2001), vol. 430, pp. 283-307. 
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Physical Model

A horizontally stratified fluid layer of 
characteristic height 𝑑, 

Cartesian coordinate system

𝑦 axis pointing vertically upward 

𝑥, 𝑧 axes in the horizontal direction for the 
three-dimensional model. 
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Bottom Isothermal Hot wall
Conducting

Top Isothermal Cold wall
Conducting

Side walls : insulated walls, 
horizontal periodic conditions

Liquid : Gallium
Walls : Copper

Externally applied vertical Magnetic field
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Physical properties of Gallium

Thermal Prandtl Number = Pr1 =   =  0.025

Magnetic Prandtl Number =  =1.5E-6

Roberts Number =
𝑃𝑟2

𝑃𝑟1
= 0.0006
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Property Units Value
Density, 𝜌 kg m-3 6.095 X 103

Melting temperature, T0 ͦC 29.7
Thermal expansion coefficient, 𝛽 K-1 1.27 X 10-4

Specific heat, CP J kg-1 K-1 397.6
Kinematic viscosity, 𝜐 m2s-1 3.2 X 10-7

Thermal diffusivity, 𝛼 =
𝜅

𝜌𝐶𝑃

m2s-1 1.27 X 10-5

Thermal conductivity, 𝜅 W m-1 K-1 31
Magnetic diffusivity, 𝜂 m2s-1 0.21
Electrical conductivity,𝜎 (ohm m)-1 3.85 X 106



The considered RMC system is a straightforward extension 
of the Lorenz model  for Boussinesq convection, with the 

Lorentz force taken into account.
𝛻. ഥ𝑉′ = 0, 𝛻. ഥ𝐵′ = 0,    

𝜌

𝜌0
= 1 − 𝛽 𝑇′ − 𝑇′0

𝜕 ഥ𝑉′

𝜕𝑡′
+ ത𝑉′. 𝛻′ ഥ𝑉′ = −

1

𝜌0
𝛻𝑝 −

𝜌

𝜌0
gෞ𝑒𝑦 + 𝜈𝛻2𝑉′

+
1

𝜇0𝜌0
𝛻 × 𝐵′ × 𝐵′ − ഥΩ × ഥΩ × ҧ𝑟 + 2 ത𝑉 × ഥΩ

Transient term + Advection (Nonlinear) term = 
Pressure force + buoyancy force +  

Lorenz force + Coriolis force +centrifugal force

𝜕 ഥ𝐵′

𝜕𝑡′
= 𝛻 × ഥ𝑉′ × ഥ𝐵′ + 𝜂𝛻2 ത𝐵′

𝜕𝑇′

𝜕𝑡′
= −𝛻. 𝑇′𝑉′ + 𝛼𝛻2𝑇′



Solutions at Conduction State

• ത𝑉𝑠 = 0,

• 𝑇′𝑠 = 𝑇′0 − ሶ𝛽𝑦′, where ሶ𝛽 is the adverse 
temperature gradient.

• 𝑝′𝑠 = 𝑝′0 − 𝑔𝜌0 𝑦′ +
1

2
𝛽 ሶ𝛽𝑦𝑦′

2

• 𝐵′
𝑠 = 𝐵′

0ෞ𝑒𝑦

Consider small perturbations in the equilibrium 
solutions as ҧ𝑓 = ҧ𝑓𝑠+ഥ𝑓∗, where f is the field variable.
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Basic (Non-dimensional) equations

The quantities 𝑉∗′, 𝑇∗′,𝑡′, 𝑃∗′, ത𝐵′∗ are made dimensionless by using the scales 
Τ𝛼 𝑑 , Δ𝑇′, Τ𝑑2 𝛼 , Τ𝜌0𝛼

−2 𝑑2, Τ𝛼𝐵′0 𝜂

𝛻. ത𝑉 = 0, 𝛻. ത𝐵 = 0

1

𝑃𝑟1

𝜕 ത𝑉

𝜕𝑡
+ (ത𝑉. 𝛻) ത𝑉 − 𝑄

𝑃𝑟2
𝑃𝑟1

ത𝐵. 𝛻 ത𝐵 =

= −𝛻
𝑃

𝑃𝑟1
+
𝑄

2

𝑃𝑟2
𝑃 𝑟1

ത𝐵 2+ 𝑄𝐵𝑦 −
𝑇𝑎 𝑃𝑟1

8
ෞ𝑒𝑦 × ҧ𝑟

2
+ 𝑄

𝜕 ത𝐵

𝜕𝑧

+𝑅𝑎 𝑇ෞ𝑒𝑦 + 𝑇𝑎1/2 ത𝑉 × ෞ𝑒𝑦 + 𝛻2 ത𝑉

𝜕

𝜕𝑡
− 𝛻2 𝑇 = 𝑤 − ത𝑉. 𝛻 𝑇

𝑃𝑟2
𝑃𝑟1

𝜕

𝜕𝑡
− 𝛻2 ത𝐵 = 𝛻 × ത𝑉 × ෞ𝑒𝑦 +

𝑃𝑟2
𝑃𝑟1

𝛻 × ത𝑉 × ത𝐵
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Non-dimensional numbers

• Rayleigh number, 

Ra = 
𝑔 𝛽 ∆𝑇 𝑑3

𝛼𝜈
=

Buoyancy force

visocous force

• Chandrasekhar number,

𝑄 =
𝜇0𝐵0

2𝑑2

𝜌0𝜈𝜂
=

Lorenz force

viscous force

• Taylor number, 𝑇𝑎 =
4 Ω2𝑑4

𝜈2
=

Coriolos force

Viscous force

• Nusselt number, 𝑁𝑢 =
ℎ 𝑑

𝜅 Δ𝑇
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Lorentz force

Coriolis force



Methodology
• Mesh : Uniform (Nodes :  80864 )

• Finite Volume method

• Advection terms: First order upwind
• Pressure : SIMPLE (Semi Implicit Pressure Linked Equations, 

Patankar 1979)
• Temperature : Second order upwind
• Magnetic field : First order upwind
• System of algebraic equations

– AMG (Algebraic Multi Grid) Solver

• Convergence criteria < 1E-4
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RBC 2D
Q = 0, Ta = 0

14

Note: Temperature is given in Kelvin and velocity is given in m/s.
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When Ra < 1708 we get Nu < 1, i.e., subcrtical flow. Heat propagates 
in the system  as a conduction mode.

Isotherms
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Isotherms

For Ra > 1708 we get 
supercritical flow.

Theoretically Chandrasekar
(1961) showed that for RBC 
only Stationary convection 
occur as a first instability at 
the onset.



Streamlines
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For Ra > 1708 we get symmetric rolls 
having y-axis as a axis of rotation.
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As Ra increases 
horizontal length 
increases.



Experiments on Rayleigh-Benard convection, magnetoconvection
and rotating magnetoconvection in liquid gallium.

J. M. AURNOU AND P. L. OLSON.  
J. Fluid Mech. (2001), vol. 430, pp. 283-307. 
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RBC 3D
Magnetoconvection (MC)

With Ta = 0



w(m/sec)
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Weak 
Flow

Cylindrical rolls with sneaking structures 



= 1210, Ra = 27100
Nu = 1.02
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Magnetoconvection

Onset of convection delayed due to the effect of Lorenz  force on 
thermal buoyancy force



Induced Vertical Magnetic field

= 1210
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Onset of convection 
delayed due to the effect 

of Lorenz  force on 
thermal buoyancy force.



Temperature Variation

= 1210 
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= 2000, Ra = 30139
Nu = 1.01 (Chandrasekhar (1961)



Plane layer Dynamo
RBC with magnetic field and rotation
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Ta = 970, Q = 1210 and Ra = 25500
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Stress free boundary conditions
Ta = 0, Q = 0
Aspect Ratio (=L/D)= 4
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L

d

Hot Wall

Cold Wall

Diameter of the convection cells is half the critical wave-length 𝜆𝑐 =
2𝜋

𝑘𝑐
= 2.82 , 

𝑘𝑐 is the critical wavenumber and 𝑘𝑐 = 𝜋/ 2.

Critical Ra = 657.25

𝜆

2
≅ 𝑑



Comparison
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Weakly non-linear analysis – Amplitudes 𝐴𝑖 , 𝑖 = 1, 2, 3, 4, 5, 6, [Kuo (1961)]
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Weakly Non-linear Analysis

DNS



Ra = 658

Ra = 758

Ra = 893

Ra = 898

Streamlines



Isotherms
Ra = 658

Ra = 758

Ra = 893

Ra = 1183



Velocity 
magnitude

Ra = 658

Ra = 758

Ra = 893

Ra = 898



Conclusions
• In RBC when Ra < 1708 we get Nu < 1, i.e. the existence of the sub-

critical flow. This result implies that heat can propagate in the system
due to a “conductive mode”.

• When Ra>1708 symmetric rolls perpendicular to vertical Y -axis are
observed.

• As Ra further increases from 1708, the horizontal width of the rolls
increases.

• In the presence of an applied magnetic field, the MC shows the
cylindrical rolls. For the Chandrasekhar number 2000, a unique pattern
of 3D rectangular vortical structures is noticed. The onset of
convection is delayed due to the effect of Lorentz force on thermal
buoyancy force.
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• In RMC at low rotation rates horizontally
stretched multi-cellular rolls perpendicular to the
gravity axis again arise.

• Simulations show the oscillatory nature of
thermal convection with the formation of thin
Hartmann layers close to boundaries due to
strong damping effect of the magnetic field on
flow velocities and heat transfer.

• For stress-free boundary conditions
– Nu = 1.00 for Ra = 658
– the plumes increases in vertical direction with Ra.
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