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Motivation
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Goals
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❏ Developing an automatic system for crop yield estimation and prediction

❏ Machine Learning approach to exploit synergies of satellite and meteorological 
data



Data collection
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❏ Survey data: USDA (county-scale)
❏ Crop yield 
❏ Proportion of each crop planted (CP) 

❏ Products:
❏ EVI: MOD13C1, 0.05º, 16 days 
❏ VOD, SM: SMAP, 9km, 3 days 
❏ TMAX, P: DAYMET, 1km, monthly

❏ Study area: CONUS (35 states)
❏ Years of data: 2015-2018 (growing season Apr-Oct)
❏ Main Crops:

❏ Corn (1744 counties)
❏ Soy (2060 counties)
❏ Wheat (1036 counties)

Only satellite data from pure croplands pixels included in 
the experiment (following MODIS-IGBP land cover) 

http://quickstats.nass.usda.gov/


Methodology
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❏ N...counties (~103)
❏ T...observations (~103)
❏ y...target variable (total yield)

Poorly conditioned matrices Problem



 Methodology
❏ Machine Learning Methods: 

❏ Linear Regression
❏ Random Forest
❏ Gaussian Processes

❏ Approaches:
❏ Individual (each variable)
❏ Global (combination of variables)

❏ Cross validation:
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Results from individual approach
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❏ Nonlinear methods (GP, RF) perform better: GP leads to the highest scores 

❏ EVI, VOD, and SM are all capturing relevant information to estimate crop yield

❏ TMAX high relation to crop growth in corn/soy is confirmed (highest scores)

❏ SM leads the feature ranking while CP seems to have less relevance



Global experiments
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Results
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❏ Best solution for all crops obtained with 
non-linear methods & all input features: 

R (0.84-0.97) and RMSE (0.51-1.2 t/ha)

❏ CP makes a difference in the global 
experiments 



Estimation maps (Corn)
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Error (%)

Corn yield (t/ha) Corn yield estimation (t/ha)

❏ Most error is concentrated in only a few 
counties 

❏ Overall, good results in terms of R, 
RMSE and relative error 
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17



Estimation maps (Soy)
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Error (%)

Soy yield (t/ha) Soy  yield estimation (t/ha)
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17

❏ Most error is concentrated in only a few 
counties 

❏ Overall, good results in terms of R, 
RMSE and relative error 



Estimation maps (Wheat)
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Error (%)

Wheat  yield (t/ha) Wheat yield estimation (t/ha)
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❏ Higher geographic variability
❏ Overall, good results in terms of R, 

RMSE and relative error 



Conclusions
❏ The proposed ML framework for crop yield estimation works: 

❏ method: non-linear regression using GPs or RF
❏ input features: time series of data summarized using PCA & proportion of planted crop CP

❏ Corn, soy and wheat estimated over CONUS R (0.84-0.97) and RMSE (0.51-1.2 t/ha)

❏ GPs allow ranking the input features: 
❏ Satellite data (optical, microwaves) lead the ranking, followed by meteorological 
❏ CP makes a difference in global experiments, while ranking is lowest in individual experiments

 
❏ Best results for Corn & Soy: higher number of observations available, concentrated in US Corn Belt
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