

# Multisensor crop yield estimation with Machine Learning



Laura Martínez-Ferrer, Maria Piles, Gustau Camps-Valls

Machine Learning for Earth System Modelling



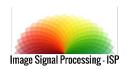






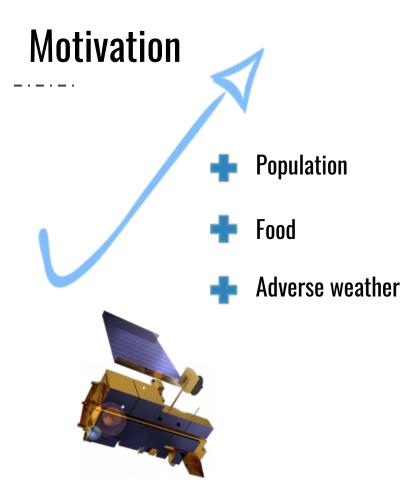
















 $\checkmark$ 

Satellite (Optical & Microwave)

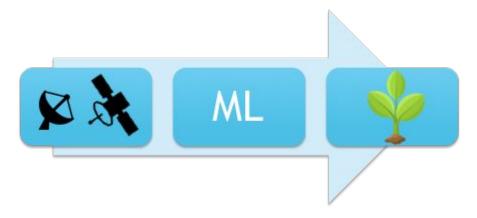


Crop proportion



#### Goals

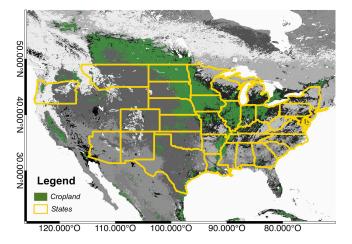
- Developing an automatic system for crop yield estimation and prediction
- Machine Learning approach to exploit synergies of satellite and meteorological data





### **Data collection**

- Survey data: <u>USDA</u> (county-scale)
  - □ Crop yield
  - **Proportion of each crop planted (CP)**
- Products:
  - □ EVI: MOD13C1, 0.05°, 16 days
  - □ VOD, SM: SMAP, 9km, 3 days
  - TMAX, P: DAYMET, 1km, monthly
- Study area: CONUS (35 states)
- □ Years of data: 2015-2018 (growing season Apr-Oct)
- 🗅 Main Crops:
  - **Corn** (1744 counties)
  - □ Soy (2060 counties)
  - Wheat (1036 counties)



Only satellite data from pure croplands pixels included in the experiment (following MODIS-IGBP land cover)



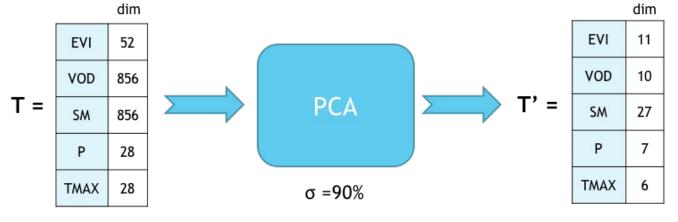
#### Methodology

- $\square N...counties (~10^3)$
- $\Box$  T...observations (~10<sup>3</sup>)





y...target variable (total yield)



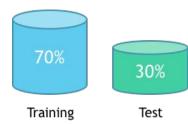
dim<sub>tot</sub>=1820

dim<sub>tot</sub>=61



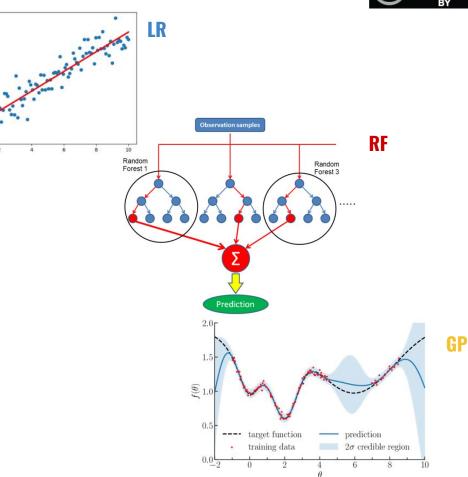
# Methodology

- Machine Learning Methods:
  Linear Regression
  Random Forest
  Gaussian Processes
- □ Approaches:
  - i Individual (each variable)
  - Global (combination of variables)
  - **Cross validation**:



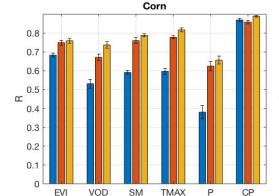
12

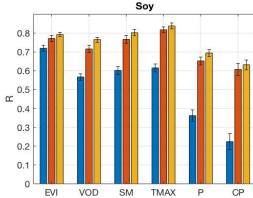
10

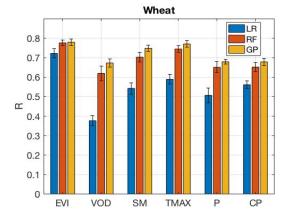


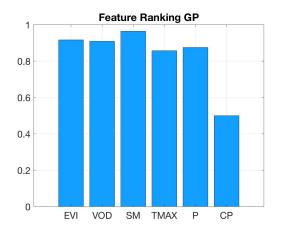


## **Results from individual approach**







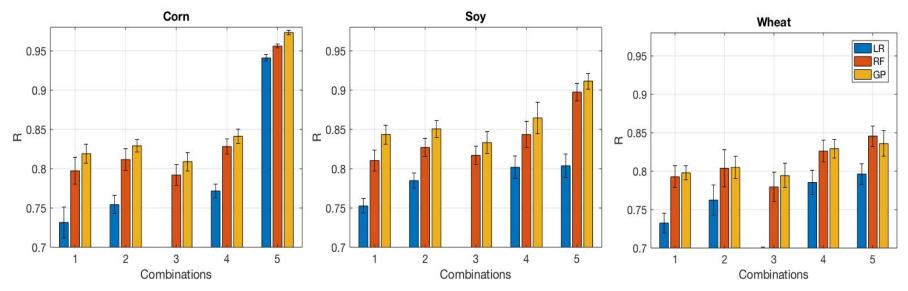


- Nonlinear methods (GP, RF) perform better: GP leads to the highest scores
- **EVI, VOD, and SM are all capturing relevant information to estimate crop yield**
- TMAX high relation to crop growth in corn/soy is confirmed (highest scores)
- SM leads the feature ranking while CP seems to have less relevance



#### **Global experiments**





| 1         | 2                       | 3                   | 4           | 5                |
|-----------|-------------------------|---------------------|-------------|------------------|
| EVI + VOD | EVI + VOD + SM<br>(SAT) | TMAX + P<br>(METEO) | SAT + METEO | SAT + METEO + CP |

#### **Results**

Best solution for all crops obtained with non-linear methods & all input features:

R (0.84-0.97) and RMSE (0.51-1.2 t/ha)

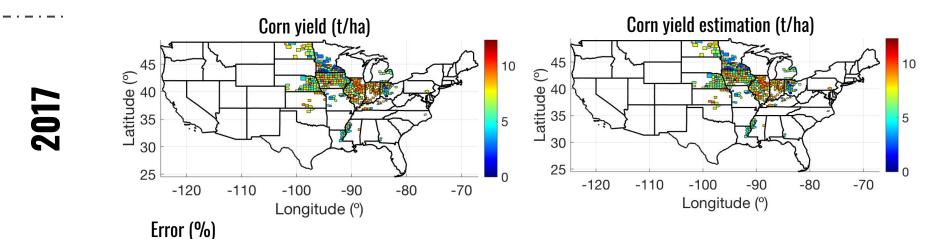
• CP makes a difference in the global experiments

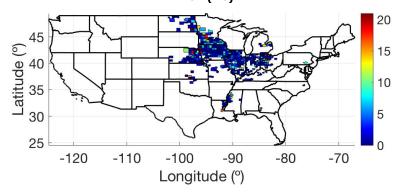
| 2            |    |       |      |      |       |      |      |       |      |      |
|--------------|----|-------|------|------|-------|------|------|-------|------|------|
| Model        | Т  | LR    |      |      | RF    |      |      | GP    |      |      |
|              | 1  | ME    | RMSE | R    | ME    | RMSE | R    | ME    | RMSE | R    |
| EVI+VOD      | 21 |       |      |      | ĺ.    |      |      |       |      |      |
| Corn         |    | 0.05  | 1.50 | 0.73 | 0.04  | 1.35 | 0.80 | 0.04  | 1.27 | 0.82 |
| Soy          |    | 0.03  | 1.44 | 0.75 | 0.03  | 1.30 | 0.81 | 0.02  | 1.17 | 0.84 |
| Wheat        |    | 0.06  | 1.50 | 0.73 | 0.07  | 1.36 | 0.79 | 0.07  | 1.33 | 0.80 |
| EVI+VOD+SM   | 48 |       |      |      |       |      |      |       |      |      |
| Corn         |    | -0.01 | 1.43 | 0.75 | 0.01  | 1.29 | 0.81 | 0.01  | 1.21 | 0.83 |
| Soy          |    | -0.02 | 1.35 | 0.78 | -0.02 | 1.25 | 0.83 | -0.03 | 1.15 | 0.85 |
| Wheat        |    | -0.01 | 1.41 | 0.76 | -0.05 | 1.30 | 0.80 | -0.02 | 1.29 | 0.80 |
| TMAX+P       | 13 |       |      |      | [     |      |      |       |      |      |
| Corn         |    | 0.01  | 1.62 | 0.68 | -0.01 | 1.37 | 0.79 | 0.00  | 1.30 | 0.81 |
| Soy          |    | -0.06 | 1.62 | 0.67 | -0.04 | 1.27 | 0.82 | -0.04 | 1.20 | 0.83 |
| Wheat        |    | 0.01  | 1.61 | 0.67 | -0.04 | 1.38 | 0.78 | -0.04 | 1.32 | 0.79 |
| SAT+METEO    | 61 |       |      |      | [     |      |      |       |      |      |
| Corn         |    | -0.03 | 1.41 | 0.77 | -0.03 | 1.27 | 0.83 | -0.01 | 1.20 | 0.84 |
| Soy          |    | 0.01  | 1.30 | 0.80 | -0.01 | 1.19 | 0.84 | 0.01  | 1.09 | 0.86 |
| Wheat        |    | 0.04  | 1.36 | 0.78 | 0.01  | 1.26 | 0.83 | 0.03  | 1.23 | 0.83 |
| SAT+METEO+CP | 62 |       |      |      | [     |      |      |       |      |      |
| Corn         |    | -0.01 | 0.75 | 0.94 | -0.01 | 0.68 | 0.96 | -0.01 | 0.51 | 0.97 |
| Soy          |    | -0.05 | 1.31 | 0.80 | -0.05 | 1.00 | 0.90 | -0.06 | 0.90 | 0.91 |
| Wheat        |    | -0.03 | 1.32 | 0.80 | -0.06 | 1.18 | 0.84 | -0.04 | 1.20 | 0.84 |

MODIS-based corn grain yield estimation model incorporating crop phenology information. Toshihiro Sakamoto, Anatoly A.Gitelson y Timothy J.Arkebauerc. (2013) RMSE=0.81 y 2.09 t/ha



# Estimation maps (Corn)

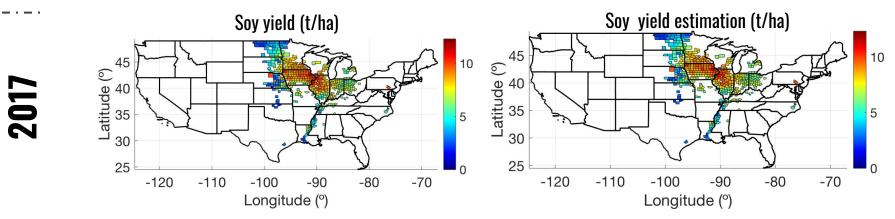


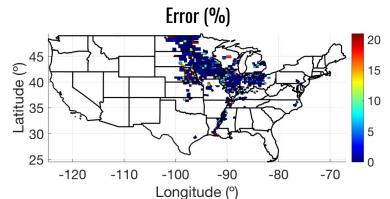


- Most error is concentrated in only a few counties
- Overall, good results in terms of R, RMSE and relative error



# Estimation maps (Soy)



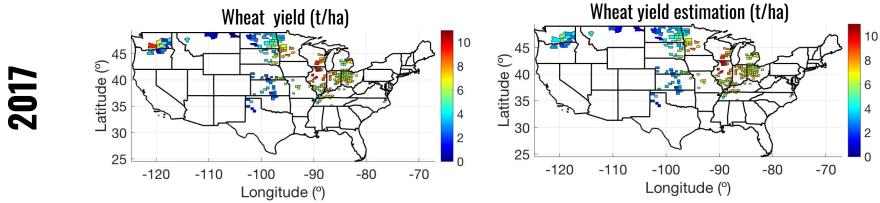


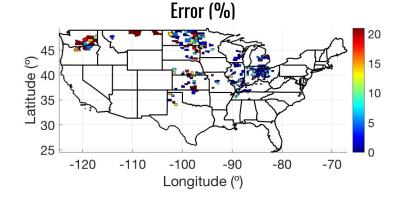
- Most error is concentrated in only a few counties
- Overall, good results in terms of R, RMSE and relative error



## **Estimation maps (Wheat)**

- · - · - ·





- □ Higher geographic variability
- Overall, good results in terms of R, RMSE and relative error



## Conclusions

- The proposed ML framework for crop yield estimation works:
  - □ method: non-linear regression using GPs or RF
  - input features: time series of data summarized using PCA & proportion of planted crop CP
- Corn, soy and wheat estimated over CONUS R (0.84-0.97) and RMSE (0.51-1.2 t/ha)
- **GPs allow ranking the input features:** 
  - Satellite data (optical, microwaves) lead the ranking, followed by meteorological
  - **CP** makes a difference in global experiments, while ranking is lowest in individual experiments
- Best results for Corn & Soy: higher number of observations available, concentrated in US Corn Belt



#### References

- A. Mateo-Sanchis et al., Synergistic integration of optical and microwave satellite data for crop yield estimation, RSE (2019)
- D. Chaparro et al., L-band vegetation optical depth seasonal metrics for crop yield assessment, RSE (2018)
- □ Konings, A., Piles, M., et al., Vegetation optical depth and scattering albedo retrieval using time series of dualpolarized L-band radiometer observations, RSE (2016)
- G. Camps-Valls et al., A survey on gaussian processes for earth observation data analysis, IEEE GRS Magazine (2016)



# Thanks!



Laura Martínez-Ferrer, Maria Piles, Gustau Camps-Valls

Machine Learning for Earth System Modelling















