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Aquifer Thermal Energy Storage (ATES) systems

- current global practical experience
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Less an energy, but more a storage problem

Basic principle of an Aquifer Thermal Energy Storage (ATES)
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More than 2,800 ATES systems currently in operation worldwide

Global distribution of Aquifer Thermal Energy Storage (ATES)
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Pumped thermal energy [MWh]

2 TWh of abstracted energy in the Netherlands

. . 4.IE 5’|E 6'|E 7'!E
Monitoring data of 73 ATES systems
10° 5
] I Heating M Cooling
. ; ’ . 53°N- 530N
. i . . e .
'_. ! o '.'; ; x
] 3 . 23 . g
107 E -'-‘ “ . : 3 :
i Y. - " . .
> v s : . -
>, N I X . 2 1 ’
: Ri . p . ’ " .: . 3 ..,
e {: . h :_d, : \ A A * 52° N | 52° N
= ’ ; : ;..' o . ol . s
. oR be - : ! X3
101 4 . st " - s
] s . ‘ - ’ T
: % ) :
* " . .
. % . .
He - of .
N .k . " " R
.. 3 .:: % ‘: ¥ I 51° A Public 51° N
'-. . : .:‘ F. - .: o . Other
100 T T |- T |‘ .:- T T -|. T T T e<D5MW @ 05-1.5MW @ >ismw
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Month pim sig oF AE

1 GWh of abstracted thermal energy for heating and cooling of buildings on average Fleuchaus et al. (2020)

Renewable Energy
380 mio m3 of abstracted groundwater.

Approximately 2 % of heating and cooling demand (127 TWh) are supplied by ATES systems.
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Balanced operation is required

Comparison of heat and cold storage

Injected warm energy [MWh]
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Authorities request a balance operation

Synergies through combined supply of
buildings with large cooling demand
(e.g. data centres) and large heating

100 % heat
injection (1)
over a period of 3 years.
Balanced (0)
demand (e.g. hotels).
Average imbalance amounts to
approximately 3 %
100 % cold
injection (-1)
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Average AT of 5 K

Injection and reinjection temperature levels
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Average injection temperature cooling [°C]
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Total costs [106€]

Total costs [106€]
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Economic comparison of ATES with common supply technologies
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ATES system

Replacement

Maintenance

Submersible
Heatig  pUMP
Heat pump

6.1(+ 0.45) million €

Schiippler et al. (2019)
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Expert survey

Qualitative risk analysis of high temperature ATES (HT-ATES)
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Conclusion

Interaction between subsurface and heating and cooling systems needs to be
optimized.

Large discrepancy between licensed and actual extraction of thermal energy leads to an
inefficient utilization of the subsurface space.

Large economic potential compared to common supply technologies such as
compression chillers.

Implementation of monitored demonstration sites and pilot projects facilitates market
entry.

Project specific risk assessment is highly recommend in particular for HT-ATES.
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