
05/05/2020 1

Optimizing NetCDF usage
Valentín KIVACHUK BURDÁ

05/05/2020 2

INTRODUCTION

- Original data sources comes in different formats (CSV,
GRIB, numpy arrays, …)

- Must convert to NetCDF format.

- Efficient most of the times. But NOT always.

05/05/2020 3

CONTEXT

3 Vars (Floats) with:
- 1461 time slots

- 384 points of latitude

- 288 points of longitude

Algorithm example

img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [‘A’, ‘B’, ‘C’]:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

A - % | Nebulosity (0 – 100)

B - ºC | Temperature (-10 – 40)

C - m/s | Wind Speed (0.xx – 400.xx)

We collect 6,000 samples for each variable,

randomly in all dimensions, and compute the

mean thereof.

05/05/2020 4

WHAT IS NetCDF?

NetCDF is a set of software and data formats that manage
scientific data.

- Self-describing format

- Multidimensional variables

- Native compression (zlib)

05/05/2020 5

EXTERNAL COMPRESSION

Apply NetCDF compression (zlib) with maximum level (9).

1853

1064

0

500

1000

1500

2000

Original Zlib lvl 9

Size MB

Original Zlib lvl 9

05/05/2020 6

EXTERNAL COMPRESSION

The performance is REALLY BAD.

1030s (17min 10s)

05/05/2020 7

What can I do?

05/05/2020 8

EXTERNAL COMPRESSION

Higer compression level needs more CPU time.

1853

1064
1216

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Original Zlib lvl 9 Zlib lvl 2

Size MB

Original Zlib lvl 9 Zlib lvl 2

05/05/2020 9

EXTERNAL COMPRESSION

BUT, bigger size -> more data to read -> slower

1030,2

1339,9

0

200

400

600

800

1000

1200

1400

1600

Zlib lvl 9 Zlib lvl 2

Performance (seconds)

Zlib lvl 9 Zlib lvl 2

img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [‘A’, ‘B’, ‘C’]:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

05/05/2020 10

TYPE OF DATA

- A value can be stored in different formats (int, float, ..)

- All values within a variable have the same format

- A format have a size (per value) and can represent a
delimited range of values

- Choosing a format with smallest size that can represent
our range of values

05/05/2020 11

TYPE OF DATA

Reduce size per value
Name Size (bytes) Range

BYTE 1 -127 ... 128

UNSIGNED BYTE 1 0 … 255

SHORT 2 -32,768 … 32,767

UNSIGNED SHORT 2 0 … 65,535

INT 4 -2,147,483,648 …

2,147,483,647

UNSIGNED INT 4 0 … 4,294,967,295

INT64 8 −𝟐𝟔𝟑… 𝟐𝟔𝟑 − 𝟏

UNSIGNED INT64 8 0 … 𝟐𝟔𝟒 − 𝟏

FLOAT 4 𝟑. 𝟒 ± 𝑬𝟑𝟖 *

DOUBLE 8 𝟏. 𝟕 ± 𝑬𝟑𝟎𝟖 *

A - % | Nebulosity (0 – 100)

B - ºC | Temperature (-10 – 40)

C - m/s | Wind Speed (0.xx – 400.xx)

* Can represent

decimals

05/05/2020 12

TYPE OF DATA

1030,2

1339,9

783

0

200

400

600

800

1000

1200

1400

1600

Zlib lvl 9 Zlib lvl 2 Data type

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type

1064
1216

700

0

200

400

600

800

1000

1200

1400

Zlib lvl 9 Zlib lvl 2 Data type

Size MB

Zlib lvl 9 Zlib lvl 2 Data type

img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [‘A’, ‘B’, ‘C’]:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

05/05/2020 13

TRANSFORMATION

Linear Packing

- Pack floats, doubles (4,
8 Bytes) inside smaller
formats (4, 2, 1 Bytes)

- Loss precission
(depends of data range
and output type)

PPC

- Set 0s some mantissa
positions (IEEE-754)

- Loss precission (can be
controlled)

- Impact on external
compressors (zlib)

05/05/2020 14

TRANSFORMATION

• C range (floats) can be packed inside shorts

A - % | Nebulosity (0 – 100)

B - ºC | Temperature (-10 – 40)

C - m2/s | Wind Speed (0.xx – 400.xx)

05/05/2020 15

TRANSFORMATION

1030,2

1339,9

783

252,6

0

200

400

600

800

1000

1200

1400

1600

Zlib lvl 9 Zlib lvl 2 Data type Packing

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type Packing

1064
1216

700
553

0

200

400

600

800

1000

1200

1400

Zlib lvl 9 Zlib lvl 2 Data type Packing

Size MB

Zlib lvl 9 Zlib lvl 2 Data type Packing

img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [‘A’, ‘B’, ‘C’]:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

05/05/2020 16

ACCESS PATTERN

05/05/2020 17

ACCESS PATTERN

- Multidimensional data can be stored in chunks.

- Each chunk is processed internally as atomic set of data.

- The shape of the chunk is closely related with the
performance of final application.

05/05/2020 18

ACCESS PATTERN

- How we access the data?

- Each time: 1 time, 64 lat and 64 lon

- Different aproach for Read, Write or Both

- A REALLY GOOD chunking for one access pattern can
be REALLY BAD for other. img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [‘A’, ‘B’, ‘C’]:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

05/05/2020 19

CHUNKING

Each chunk with 1 time, 64 lat and 64 lon.

1030,2

1339,9

783

252,6

10
0

200

400

600

800

1000

1200

1400

1600

Zlib lvl 9 Zlib lvl 2 Data type Packing Chunk 1x64x64

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type Packing Chunk 1x64x64

05/05/2020 20

CHUNKING

Find the best chunksize: A complex problem (1x64x72)

1030,2

1339,9

783

252,6

10 9,9
0

200

400

600

800

1000

1200

1400

1600

Zlib lvl 9 Zlib lvl 2 Data type Packing Chunk 1x64x64 Chunk 1x64x72

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type Packing Chunk 1x64x64 Chunk 1x64x72

05/05/2020 21

ITERATE BY VARIABLE

- NetCDF read data from disk to RAM. A expensive
operation.

- Stores data in cache (RAM) to quickly retrieve previously
read data.

- Cache is per variable (not reused between variables)

05/05/2020 22

ITERATE BY VARIABLE

1030,2

1339,9

783

252,6

10 9,9 10,2
0

200

400

600

800

1000

1200

1400

1600

Zlib lvl 9 Zlib lvl 2 Data type Packing Chunk
1x64x64

Chunk
1x64x72

Iter by var

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type Packing

Chunk 1x64x64 Chunk 1x64x72 Iter by var

img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [‘A’, ‘B’, ‘C’]:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

img_len = 64

list_rand = 6000 random values of time, lat and lon

for var in [‘A’, ‘B’, ‘C’]:

for time, lat, lon in list_rand:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

Not effective for this code

05/05/2020 23

RANDOMNESS

- Arbitrary access to data is very slow compared to
sequential.

- Some applications requires random order of values.

- Order of data access is independent from application
data consumption.

- Better usage of cache mechanisms (spatial locality)

05/05/2020 24

RANDOMNESS

1030,2

1339,9

783

252,6

10 9,9 10,2 7,4
0

200

400

600

800

1000

1200

1400

1600

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type Packing

Chunk 1x64x64 Chunk 1x64x72 Iter by var Randomness

img_len = 64

list_rand = 6000 random values of time, lat and lon

for var in [‘A’, ‘B’, ‘C’]:

for time, lat, lon in list_rand:

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

img_len = 64

list_rand = 6000 random values of time, lat and lon

list_seq, permutation = order_list(list_rand)

for var in [‘A’, ‘B’, ‘C’]:

for time, lat, lon in list_seq :

data = NetCDF[var][time, lat + img_len, lon + img_len]

acumulate_mean(var, data)

05/05/2020 25

FINAL RESULTS

- Storage
- Original 1853 MB (100,00 %)

- Optimized 553 MB (29,84 %)

- Performance
- Original 1030,2s

- Optimized 7,4s (~x139 faster)

05/05/2020 26

CONCLUSIONS

• Find the best type of data for the values you will store.

• A bad chunking have a big impact in the performance.

• Choosing the best chunking is a complex problem.

• Always try to access the data as much sequential as
possible.

05/05/2020 27

• The « NetCDF: Performance and Storage Optimization
of Meteorological Data » contain more details and
reproducible example.

05/05/2020 28

Merci de votre attention

© IRT AESE ”Saint Exupéry” - All rights reserved Confidential and proprietary document. This document and all information contained

herein is the sole property of IRT AESE “Saint Exupéry”. No intellectual property rights are granted by the delivery of this document

or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written

consent of IRT AESE “Saint Exupéry” . This document and its content shall not be used for any purpose other than that for which it is

supplied. IRT AESE ”Saint Exupéry” and its logo are registered trademarks.

