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Optimizing NetCDF usage
Valentín KIVACHUK BURDÁ
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INTRODUCTION

- Original data sources comes in different formats (CSV, 
GRIB, numpy arrays, …)

- Must convert to NetCDF format.

- Efficient most of the times. But NOT always.
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CONTEXT

3 Vars (Floats) with:
- 1461 time slots

- 384 points of latitude

- 288 points of longitude

Algorithm example

img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [ ‘A’, ‘B’, ‘C’ ]:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)

A - %      | Nebulosity (0 – 100)

B - ºC     | Temperature (-10 – 40)

C - m/s   | Wind Speed (0.xx – 400.xx)

We collect 6,000 samples for each variable, 

randomly in all dimensions, and compute the 

mean thereof.
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WHAT IS NetCDF?

NetCDF is a set of software and data formats that manage 
scientific data.

- Self-describing format

- Multidimensional variables

- Native compression (zlib)



05/05/2020 5

EXTERNAL COMPRESSION

Apply NetCDF compression (zlib) with maximum level (9).
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EXTERNAL COMPRESSION

The performance is REALLY BAD.

1030s (17min 10s)
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What can I do?
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EXTERNAL COMPRESSION

Higer compression level needs more CPU time.

1853

1064
1216

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Original Zlib lvl 9 Zlib lvl 2

Size MB

Original Zlib lvl 9 Zlib lvl 2



05/05/2020 9

EXTERNAL COMPRESSION

BUT, bigger size -> more data to read -> slower
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img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [ ‘A’, ‘B’, ‘C’ ]:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)
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TYPE OF DATA

- A value can be stored in different formats (int, float, ..)

- All values within a variable have the same format

- A format have a size (per value) and can represent a 
delimited range of values

- Choosing a format with smallest size that can represent 
our range of values
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TYPE OF DATA

Reduce size per value
Name Size (bytes) Range

BYTE 1 -127 ... 128

UNSIGNED BYTE 1 0 … 255

SHORT 2 -32,768 … 32,767

UNSIGNED SHORT 2 0 … 65,535

INT 4 -2,147,483,648 …

2,147,483,647

UNSIGNED INT 4 0 … 4,294,967,295

INT64 8 −𝟐𝟔𝟑… 𝟐𝟔𝟑 − 𝟏

UNSIGNED INT64 8 0 … 𝟐𝟔𝟒 − 𝟏

FLOAT 4 𝟑. 𝟒 ± 𝑬𝟑𝟖 *

DOUBLE 8 𝟏. 𝟕 ± 𝑬𝟑𝟎𝟖 *

A - %      | Nebulosity (0 – 100)

B - ºC     | Temperature (-10 – 40)

C - m/s   | Wind Speed (0.xx – 400.xx)

* Can represent

decimals
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TYPE OF DATA
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img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [ ‘A’, ‘B’, ‘C’ ]:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)
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TRANSFORMATION

Linear Packing

- Pack floats, doubles (4, 
8 Bytes) inside smaller
formats (4, 2, 1 Bytes)

- Loss precission
(depends of data range 
and output type)

PPC

- Set 0s some mantissa
positions (IEEE-754)

- Loss precission (can be
controlled)

- Impact on external
compressors (zlib)
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TRANSFORMATION

• C range (floats) can be packed inside shorts

A - %      | Nebulosity (0 – 100)

B - ºC     | Temperature (-10 – 40)

C - m2/s  | Wind Speed (0.xx – 400.xx)
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TRANSFORMATION
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img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [ ‘A’, ‘B’, ‘C’ ]:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)
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ACCESS PATTERN
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ACCESS PATTERN

- Multidimensional data can be stored in chunks.

- Each chunk is processed internally as atomic set of data.

- The shape of the chunk is closely related with the 
performance of final application.
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ACCESS PATTERN

- How we access the data?

- Each time: 1 time, 64 lat and 64 lon

- Different aproach for Read, Write or Both

- A REALLY GOOD chunking for one access pattern can
be REALLY BAD for other. img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [ ‘A’, ‘B’, ‘C’ ]:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)
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CHUNKING

Each chunk with 1 time, 64 lat and 64 lon.
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CHUNKING

Find the best chunksize: A complex problem (1x64x72)
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ITERATE BY VARIABLE

- NetCDF read data from disk to RAM. A expensive 
operation.

- Stores data in cache (RAM) to quickly retrieve previously 
read data.

- Cache is per variable (not reused between variables)
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ITERATE BY VARIABLE
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img_len = 64

list_rand = 6000 random values of time, lat and lon

for time, lat, lon in list_rand:

for var in [ ‘A’, ‘B’, ‘C’ ]:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)

img_len = 64

list_rand = 6000 random values of time, lat and lon

for var in [ ‘A’, ‘B’, ‘C’ ]:

for time, lat, lon in list_rand:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)

Not effective for this code
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RANDOMNESS

- Arbitrary access to data is very slow compared to 
sequential.

- Some applications requires random order of values.

- Order of data access is independent from application 
data consumption.

- Better usage of cache mechanisms (spatial locality)



05/05/2020 24

RANDOMNESS

1030,2

1339,9

783

252,6

10 9,9 10,2 7,4
0

200

400

600

800

1000

1200

1400

1600

Performance (seconds)

Zlib lvl 9 Zlib lvl 2 Data type Packing

Chunk 1x64x64 Chunk 1x64x72 Iter by var Randomness

img_len = 64

list_rand = 6000 random values of time, lat and lon

for var in [ ‘A’, ‘B’, ‘C’ ]:

for time, lat, lon in list_rand:

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)

img_len = 64

list_rand = 6000 random values of time, lat and lon

list_seq, permutation = order_list(list_rand)

for var in [ ‘A’, ‘B’, ‘C’ ]:

for time, lat, lon in list_seq :

data = NetCDF[var][time, lat + img_len, lon + img_len ]

acumulate_mean(var, data)
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FINAL RESULTS

- Storage
- Original        1853 MB (100,00 %)

- Optimized 553 MB (  29,84 %)

- Performance
- Original        1030,2s

- Optimized 7,4s (~x139 faster)
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CONCLUSIONS

• Find the best type of data for the values you will store.

• A bad chunking have a big impact in the performance.

• Choosing the best chunking is a complex problem.

• Always try to access the data as much sequential as 
possible.
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• The « NetCDF: Performance and Storage Optimization 
of Meteorological Data » contain more details and 
reproducible example.
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Merci de votre attention
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