

CO, storage capacity of Kazakhstan

Yerdaulet Abuov | Woojin Lee*
E-mail: woojin.lee@nu.edu.kz
Nazarbayev University | School of Engineering and Digital Sciences

Introduction

Kazakhstan ratified Paris Agreement and country has to limit its Greenhouse Gas (GHG) emissions. The baseline year is 1990. Two targets for National Determined Contribution (NDC) exist:

- Conditional (NDC25) 25% below baseline year (subject to international investments)
- Unconditional (NDC15) 15% below baseline year

Kazakhstan's progress in NDCs:

- NDC25 limit was exceeded in 2011
- NDC15 limit was exceeded in 2016

GHG emissions of Kazakstan with forecast

- Coal accounts for 65% of nation's net energy output
- 67% of total GHG emissions correspond to stationary combustion points (power plants, cement factories, etc.)
- 225 stationary combustion facilities with > 20 000 t annual GHG emissions are registered in the country
- 104 of them are large emitters with > 100 000 t annual GHG emissions

Research Objectives

- To evaluate CO₂ storage potential in sedimentary basins of Kazakhstan
- To estimate effective CO₂ storage capacity in sedimentary basins of Kazakhstan
- To serve as a baseline for the future CCS activities in Kazakhstan

Methodology

Suitability of basins have been evaluated in terms of storage safety, storage capacity and feasibility:

- Storage safety category: Tectonic setting; Basin depth; Faulting intensity; Salts
- Storage capacity category: Size of the basin; Aquifers; Hydrocarbon potential; Geothermal regime; Coal reserves
- Feasibility category: Industrial maturity; On/offshore;
 Climate; Accessibility; Infrastructure; CO₂ sources
 Qualitative features of the basins are transformed into quantitative values for suitability ranking

Suitability of basins

- Most suitable basins are in the western and central part of the country
- Major part of CO₂ emitters are far from potential storage sites, however still significant part of emitters resides in nearby area of potential storage sites

Sedimentary	Containment	Capacity	Feasibility	Overall suitability	Rank
basin	(23%)	(34%)	(43%)	(100%)	
Precaspian	0.77	0.84	0.85	0.83 (very good)	1
Mangyshlak	0.78	0.65	0.92	0.80 (very good)	2
South Torgay	0.78	0.49	0.92	0.74 (good)	3
Ustyurt	0.96	0.72	0.68	0.73 (good)	4
Chu-Sarysu	0.51	0.60	0.80	0.66 (moderate)	5
Zaysan	0.15	0.17	0.37	0.25 (poor)	6

- Precaspian, Mangyshlak, South Torgay and Ustyurt are the suitable basins for the geological CO₂ storage
- Selected 4 basins have no severe faulting, well-sealed, sufficient capacity and existing infrastructure

CO₂ storage capacity

The effective CO₂ storage capacity was estimated using:

- Carbon Sequestration Leadership (CSLF) formula for oil and gas reservoirs
- US DOE formula for saline aquifers

Sedimentary basin	Oil reservoirs	Gas reservoirs	Saline aquifer
	capacity, Mt	capacity, Mt	capacity, Mt
Precaspian	179.2	524	131,250
Mangyshlak	8.0	24	44,156
South Torgay	5.4	21	5,123
Ustyurt	8.7	20	125,063
Chu-Sarysu	0	15	96,768
Zaysan	2.3	6	94
Total	203.6	610	402,691

Precapian basin:

Pre-salt carbonates and post-salt sediments (~132 Gt)

Mangyshlak basin:

 Low-Middle Jurassic sandstones are covered with highquality regional seal (~44 Gt)

South Torgay basin:

Jurassic grabens filled with sandstone sediments (~5 Gt)

Ustyurt basin:

• Jurassic-Triassic sections and sediments from the Buzachi region (~125 Gt)

Conclusion & Outlook

- Kazakhstan has a tremendous potential for CCS to achieve Paris Agreement goals
- Total CO₂ storage capacity in 4 selected basins is ~306 Gt or ~917 years of annual Kazakhstan's GHG emissions
- Basin-specific studies will be carried out in one of selected basins

Acknowledgements

This research was supported by Nazarbayev University Research Grants (Contract No. 284-2018//012-2019 and 076-2019 and CRP: 091019CRP2106).

