

Root dynamics and soil-enzyme activities in field bean/barley intercrops

University of Pisa

Department of Agriculture, Food and Environment Department of Veterinary Science

Cardelli R., Esnarriaga D.N., Mariotti M., Arduini I.

Intercropping for Sustainable Agriculture

Current know-how

- increased crop yields through COMPLEMENTARITY between the partner crops;
- higher yield stability (resilience towards climate change);
- lower need of fertilizer inputs
- reduced pest susceptibility;
- improved soil health.

Complementarity

The major mechanisms contributing to, are:

Resource partitioning (niche partitioning):

- benefits derive from a more complete utilization of available resources
- when partner species differ in phenology, vegetative architecture and rooting depth,

Facilitation, occurs when one partner crop:

- improves the environmental conditions to another partner
- provides a limiting resource

Complementarity

in legume/cereal intercrops

Different root architecture and rooting depth

Grass roots are more superficial than legume roots

Different N source

- Biological N fixation of legumes reduces the competition for mineral N
- Legume increase the labile N pool in soil

DOES THIS REALLY WORK?

Forage yield

in legume/cereal intercrops

- Was higher in IC than SC;
- Fertilizer input increased yield of SC, but not IC;
- The proportion of field bean decreased from 50% to 40%, with NP input in both SC and IC.

WHAT HAPPENS AT THE ROOT LEVEL?

Soil cores collected from field bean and barley sole crops and intercrops

Determinations:

- Root density in soil
- Morphological traits (length, diameter, surface, volume) by means of WinRhizo
- Nodule number
- Specific Root Length
- Soil enzyme activity

Root density

Response to Intercrop and Fertilizer input

 Root density of intercrops (IC) was intermediate than in sole crops (SC)

- Fertilizer input:
 - reduced root biomass and length in solecrops
 - increased root biomass and length in intercrops
 - increased the proportion of B roots from 30 to 38%.

Competitive root growth stimulated by higher nutrient availability in soil

Specific Root Length

Cardelli R., Esnarriaga D.N., Mariotti M., Arduini I.

Nodule density

Response to Intercrop and Fertilizer input

NP increased SRL of both species in IC

Enzyme activity in soil

in legume/cereal intercrops

- Dehydrogenase (an intracellular oxidoreductase enzyme activity) was stimulated by field bean.
- All other hydrolytic enzyme activities and GMea were highest in the barley SC and lowest in the IC.

	Dehydroge nase	β- glucosida se	Phosphat ase	Arylsulpha tase	GMea
Crop System	μmol TPFg-1h-1	μmol p-nitrophenol g-1h-1			
Field bean SC	0.113 a	0.589 b	1.428 b	0.322 b	0.418 ab
Barley SC	0.098 b	0.713 a	1.566 a	0.340 a	0.438 a
IC 1:1	0.103 ab	0.572 b	1.373 c	0.300 с	0.394 b

Summary of Results

Root dynamics and soil-enzyme activities in field bean/barley intercrops

- Forage yield was IC 1:1 > Fb+B SC on equivalent land surface;
- Root density in soil was intermediate in IC between Fb and B SCs;
- NP increased root density and the SRL in the IC, but dramatically decreased nodule density;
- enzyme activity seemed to be associated with higher root length density in soil

Preliminary Conclusions

Root dynamics and soil-enzyme activities in field bean/barley intercrops

- Complementarity for N source only in limited N conditions;
- Competition for mineral uptake was demonstrated by changes in root traits and nodule density when mineral NP were supplied;
- Replacement of spot crop failures and Facilitation in water and nutrient acquisition should be considered as drivers of high forage yield in intercrops.

