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Properties of the electron distribution function
Helios measurements

(Verscharen et al., 2019b)

The electron
distribution consists
of three parts: core,
strahl, and halo.
The strahl is a
field-aligned beam of
superthermal
electrons.
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Properties of the electron distribution function
Helios measurements

(Pilipp et al., 1987; Marsch, 2006)

The electron
distribution consists
of three parts: core,
strahl, and halo.
The strahl is a
field-aligned beam of
superthermal
electrons.
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Properties of the electron distribution function
Observed relative densities of thermal and superthermal electrons

(Štverák et al., 2009)

While the relative
strahl density
decreases with
heliocentric distance,
the relative halo
density increases.
This suggests that
both populations are
linked.
Strahl electrons are
transferred into the
halo as the wind
expands.
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Scenario for the electron evolution in the inner heliosphere

We propose the following scenario:

1 Electrons are energised in the corona.
2 As the wind accelerates, the mirror force in the expanding magnetic field focusses

energetic electrons into the strahl.
3 Strahl-driven instabilities regulate the strahl speed (as long as collisions are

inefficient).
4 These instabilities scatter the strahl electrons into the halo.

In this presentation, we only address the points 3 and 4 in this scenario.
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Fast-magnetosonic/whistler instability
A theoretical framework to describe a scattering instability

Certain requirements for instability must be fulfilled:
polarisation properties
strahl resonance leads to wave growth
other particle components do not suppress instability through damping

In linear theory, this means for the total growth rate:

γ =
∑
j

+∞∑
n=−∞

γnj > 0

for all species j (protons, electron core, halo, strahl,. . . ). n = 0 is the Landau
resonance, and n 6= 0 are cyclotron resonances.
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Fast-magnetosonic/whistler instability
A theoretical framework to describe a scattering instability

The best candidate is an instability of the oblique fast-magnetosonic/whistler (FM/W)
wave, which is determined by only three contributions to the total growth rate:

γ ≈ γn=+1
s + γn=−1c + γn=0

c > 0

(strahl cyclotron driving, core cyclotron damping, and core Landau damping)
We use analytical expressions from Kennel and Wong (1967) for these three
contributions.
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Scattering mechanism
Quasilinear diffusion scatters strahl electrons into the halo

This instability is self-excited by the strahl
and scatters strahl electrons into the halo.
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Other cases:

Case (a) is stable →
damping

Case (b) is unstable
→ self-induced
scattering

Case (c) is stable →
damping
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Regime 1: low β
Resonant strahl driving competes with resonant core damping

At low β, there is a “sweet spot” for instability at Us = 3wc:
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Regime 2: intermediate to high β
Resonant strahl driving competes with resonant core damping

At higher β, cyclotron damping becomes less important, and the balance between strahl
driving and core Landau damping must be evaluated:
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Results: Instability thresholds in both regimes
When does the strahl drive the FM/W instability?

We have developed analytical expressions for the strahl instability thresholds:
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(Verscharen et al., 2019a)
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Results: Comparison with observations
Wind observations at 1 au
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This plot shows our analytical
instability threshold “Equation (24)”
and the numerical solution from full
hot-plasma theory “NHDS”.
We predict that, in the parameter
space to the right of these lines, the
oblique FM/W wave is unstable.
The observations are restricted to
stable values in this parameter space.
This suggests that the instability
actually limits the electron distribution.
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Results: Kinetic simulation of the oblique FM/W instability
Quasilinear diffusion describes the evolution of the electron strahl

(Jeong, DV, et al., 2020)

We also simulate the evolution of the VDF by
solving the quasilinear diffusion equation
numerically.
We find that the strahl electrons indeed scatter
into the velocity space associated with the halo.
This study confirms the phase-space trajectories
of our analytical model and the quasilinear
saturation of the oblique FM/W instability.
PIC simulations can also test this
electron-strahl behaviour.
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Results: Kinetic simulation of the oblique FM/W instability
Expansion, focussing, instability, and collisions define the evolution of the electron strahl

(Jeong, DV, et al., 2020)

The instability creates sharp gradients in
velocity space through quasilinear diffusion.
Collisions relax these gradients, albeit on larger
timescales than the growth time of the
instability.
We are currently studying the interplay of
expansion, focussing, instability, and collisions
in the strahl evolution.
In this way, we will test our full scenario for the
strahl evolution from the Sun to 1 au and
beyond.
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What are the next steps?
ESA Voyage 2050 White Paper: A case for electron-astrophysics

1. Core Proposing Team  
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Explore the smallest scales: electron-astrophysics

The smallest scales in the plasma (de, ρe, λe)
determine the large-scale evolution of the system.

Such a mission requires:
detailed electron distribution functions
very high cadence
multi-point measurements

(available on arXiv: Verscharen et al., 2019c)

Daniel Verscharen et al. Electron-strahl scattering



Conclusions

The mirror force focusses superthermal coronal electrons into the strahl.
Strahl electrons excite an instability of the oblique FM/W wave.
This instability scatters strahl electrons into the halo leading to an increase in
nh/ns with heliocentric distance.
We find analytical thresholds for this instability in two different β-regimes.
Prediction for PSP and Solar Orbiter: close to the Sun, the strahl speed is
Us . 3wc. In normalised units, this means Us/vAe . 3

√
βc.

Quasilinear simulations confirm this scenario, but further studies are under way.
Electron-astrophysics is a new frontier in space physics.
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