Drying Development

Assessing the Impact of Droughts on Economic Growth Accounting for Adaptation

Alexander Marbler^{1,2}

¹Department of Economics, University of Graz ²FWF Doctoral Program Climate Change, University of Graz

EGU 2020

© Alexander Marbler

DO NOT SHARE

Recent studies suggest **climate change** and **extreme events** pose serious challenges to economic development:

- temperature (see, e.g., Dell et al. 2010; Burke et al. 2015; Deryugina and Hsiang 2017)
- **tropical cyclones** (see, e.g., Hsiang and Jina 2014)
- earthquakes, storms, heat, extreme precipitation (high/low) conditions,.. (see, e.g., Felbermayr and Gröschl 2014)

C Alexander Marbler

DO NOT SHARE

- Essential to understand: (Botzen et al. 2019; Carleton and Hsiang 2016)
 - potential short-run, long-run, and heterogeneous economic consequences of global warming and extreme weather events
 - factors contributing to adaptation to climatic hazards
- Recent advances in climate econometrics: Accounting for *adaptation* (e.g. Carleton et al. 2018; Deryugina and Hsiang 2017)
- This study: Assesses the impact of droughts on economic growth accounting for adaptation

^{C)} Alexander Marbler

DO NOT SHARE

	Dependent Variable	Drought Measure	Climatic Data	Evaluated at	Accounts for Adaptation
Fomby et al. 2009; Raddatz 2009; Loayza et al. 2012; etc.	GDP growth	Reported damages (EMDAT)	-	Local level	No
Felbermayr & Gröschl 2014	GDP growth	Climatic	Precip.	Country level	No
Berlemann & Wenzel 2016	GDP growth	Climatic	Precip.		No
Berlemann & Wenzel 2018	GDP growth	Climatic	Precip. PET	Country level	No
Felbermayr et al. 2018	Nighttime Lights	Climatic	Precip. PET	0.5 degree cells	No
This Study	GDP growth	Climatic	Precip. PET	0.25 degree cells	Yes

© Alexander Marbler

DO NOT SHARE

Contribution of this study:

- identifies grid cell-year drought events on 0.25°x 0.25°global grid based on Standardized Precipitation Evapotranspiration Index (SPEI) and criteria from hydrology (e.g. Spinoni et al. 2019)
- accounts for adaptation by recovering local nonlinear responses conditional on development levels and underlying average drought exposure
- bridges the gap between recent advances in climate econometrics (see, e.g., Hsiang 2016) and empirical natural disasters literature

© Alexander Marbler

DO NOT SHARE

- Identify the sensitivity of economic growth to droughts by exploiting random year-to-year variation in the distribution of annual drought severity (i.e. exploit within unit variation over time)
- Account for adaptation by recovering non-linear local responses
- Conditional on underlying drought climates and initial development levels of countries (i.e. exploit cross-sectional variation)

^C Alexander Marbler

DO NOT SHARE

- Non-linearities allow for differential responses along the distribution of drought severity
 - Flattening of the response function at certain points indicates adaptation (see, e.g., Hsiang 2016 and Deryugina and Hsiang 2017)
- Conditioning on income and average exposure allows for differential response of poor/rich and high/low exposure countries (see, e.g., Carleton et al. 2018)
 - Does higher income reduce the sensitivity to droughts? (e.g. due to higher spending on adaptation measures [see, e.g., Fankhauser and McDermott 2014])
 - Does higher drought exposure reduce the sensitivity to droughts? (e.g. benefits of adaptation increase with average exposure level [see, e.g., Hsiang and Narita 2012])

^C Alexander Marbler

DO NOT SHARE

$$growth_{it} = f(\mathbf{DS}_{it}, \mathbf{DS}_{it-1}) + g(\mathbf{T}_{it}, \mathbf{T}_{it-1}) + h(\mathbf{R}_{it}, \mathbf{R}_{it-1}) + \alpha_i + \delta_{drt} + \theta_i \times t + \epsilon_{it},$$
(1)

where i denotes country, t year, d development level, r region, and c cell.

DS: country-level vector of p-order polynomials of cell-year drought severity:

$$\boldsymbol{DS_{it}} = \left[\sum_{c \in i} w_{ci} \left(DS_{ct} \right), \sum_{c \in i} w_{ci} \left(DS_{ct}^2 \right), \dots, \sum_{c \in i} w_{ci} \left(DS_{ct}^p \right) \right]$$

- time-invariant area weights w_{ci} for aggregation across cells within countries
- same for temperature *T_{it}* and precipitation *R_{it}*

© Alexander Marbler

DO NOT SHARE

Nonparametric controls:

- $\triangleright \alpha_i$: country-specific fixed effects
 - control for all time-invariant country-specific characteristics
- > δ_{dtr} : development level x region x year fixed effects
 - account for all time-varying trends/shocks to development level-specific GDP growth rates within each (world) region
- \triangleright $\theta_i \times t$: country-specific time trends
 - control for country-specific trends in societal/economic and climatic factors

Dependent variable: growth rate of inflation-adjusted GDP per capita

Focus on $f(DS_{it})$: captures average treatment effect over all countries

C Alexander Marbler

DO NOT SHARE

As in (1) but allow for *differential response* in rich and poor countries: $growth_{it} = f_{\underline{d}}(DS_{it}, DS_{it-1}) + g_d(T_{it}, T_{it-1}) + h_d(R_{it}, R_{it-1}) + \alpha_i + \delta_{drt} + \theta_i \times t + \epsilon_{it},$ (2)

- *f_d(DS_{it})* captures development level specific effect of droughts on economic growth
 - i.e. distinguish between rich and poor countries to account for differences in drought sensitivity due to, e.g., differential spending on adaptation

^C Alexander Marbler

DO NOT SHARE

- > As in (2) but replace $f_d(DS_{it}, DS_{it-1})$ by $f_d(DS_{it}, DS_{it-1}|DSMEAN_i)$
- f_d(DS_{it}|DSMEAN_i) captures heterogeneity in drought sensitivity due to differential drought climates (and development levels)

Climatic data

- Princeton Global Forcing (PGFv3) reanalysis data: monthly precipitation and min/max monthly temperature at 0.25°x0.25°from 1948-2016
- Economic Data
 - World Development Indicators (WDI) (World Bank, 2019): inflation adjusted as well as inflation and PPP adjusted gross domestic product (GDP) for 1960-2018
- Global coverage: 192 countries over 1960-2016

^{C)} Alexander Marbler

DO NOT SHARE

- Drought magnitude = severity of cell-year drought events based on SPEI:
 - drought event in cell c and year t starts when SPEI falls below -1 for at least two consecutive months
 - drought event ends when SPEI returns to positive value
 - SPEI of non drought months are set to 0
 - severity of cell-year drought event is the negative sum of monthly SPEI values belonging to a drought event:

$$DS_{ct} = -\left(\sum_{m \in t} SPEI_{c,m}\right)$$

C Alexander Marbler

DO NOT SHARE

Table: Drought-growth response function. Regression estimates are from a fourth-order polynomial in annual drought severity. Point estimates indicate the effect of a year with drought severity shown, relative to a year with 0 drought severity. Standard errors are robust to spatial (1000km) and serial correlation. 1% (***), 5% (**), and 10% (*)

		Growth rate	
	(1)	(2)	(3)
1-in-100-year event	-0.0120**	-0.0122**	-0.0114**
	(0.0052)	(0.0052)	(0.0049)
1-in-50-year event	-0.0116^{***}	-0.0113**	-0.0095**
	(0.0044)	(0.0046)	(0.0044)
1-in-20-year event	-0.0092***	-0.0086**	-0.0067**
	(0.0032)	(0.0034)	(0.0033)
1-in-10-year event	-0.0065**	-0.0061**	-0.0049*
	(0.0027)	(0.0028)	(0.0029)
Adjusted R ²	0.2006	0.2153	0.1956
Observations	8,409	8,349	8,349
Country FE	Yes	Yes	Yes
Region × Year FE	Yes	-	-
Poor x Region x Year FE	-	Yes	Yes
Country-specific linear trend	Yes	Yes	-

© Alexander Marbler

DO NOT SHARE

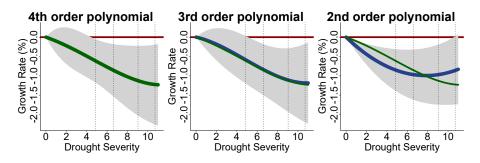


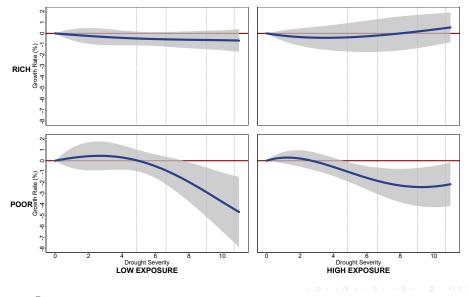
Figure: Robustness of the all development levels growth-drought relationship with the fourth-order polynomial as the main specification in green. Vertical lines represent global 1-in-10, 1-in-20, 1-in-50, and 1-in-100 country-year drought events (from left to right).

© Alexander Marbler

DO NOT SHARE

Table: Drought-growth response function with development level heterogeneity.

Regression estimates are from a fourth-order polynomial in annual drought severity. Point estimates indicate the effect of a year with drought severity shown, relative to a year with 0 drought severity. Standard errors are robust to spatial (1000km) and serial correlation. 1% (***), 5% (**), and 10% (*)


	Growth rate			
	(1)	(2)	(3)	
Panel A: rich				
1-in-100-year event	0.0012	0.0001	-0.0005	
	(0.0048)	(0.0050)	(0.0050)	
1-in-50-year event	-0.0001	-0.0005	0.0008	
	(0.0044)	(0.0048)	(0.0046)	
1-in-20-year event	-0.0031	-0.0026	-0.0004	
	(0.0039)	(0.0043)	(0.0041)	
1-in-10-year event	-0.0052	-0.0044	-0.0028	
	(0.0035)	(0.0038)	(0.0037)	
Panel B: poor				
1-in-100-year event	-0.0258^{***}	-0.0245^{***}	-0.0231***	
	(0.0083)	(0.0087)	(0.0084)	
1-in-50-year event	-0.0255***	-0.0242***	-0.0235***	
	(0.0070)	(0.0074)	(0.0072)	
larbler	DO NOT SHARE		WORK IN PROGRESS: P	

© Alexander Marbler

DO NOT SHARE

1-in-20-year event	-0.0172***	-0.0166***	-0.0161***
	(0.0048)	(0.0050)	(0.0049)
1-in-10-year event	-0.0076^{*}	-0.0079**	-0.0071*
	(0.0039)	(0.0039)	(0.0040)
Adjusted R ²	0.2126	0.2211	0.2016
Observations	8,349	8,349	8,349
Country FE	Yes	Yes	Yes
Region × Year FE	Yes	-	-
Poor x Year FE	Yes	-	-
Poor x Region x Year FE	-	Yes	Yes
Country-specific linear trend	Yes	Yes	-

Results: 3. <u>Development level specific</u> response function conditional on average drought exposure

© Alexander Marbler

DO NOT SHARE

- Drought sensitivity of economic growth significantly higher in poor than in rich countries
 - \rightarrow Higher incomes contribute to adaptation
- Earlier flattening of response functions in high exposure compared to low exposure countries indicates differential adaptation patterns
 - \rightarrow Higher average exposure to droughts contribute to adaptation

C Alexander Marbler

DO NOT SHARE