

(日)

UV-Indien Network

A network dedicated to the long-term monitoring of UV radiation in the Indian Ocean.

K. Lamy¹, T. Portafaix¹, C. Brogniez², K. Lakkala³, J.B. Forestier¹, V. Amelie⁴, M. Toihir⁵, S. Rakotoniaina⁶, H. B. Razafindradina⁷

¹ LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France

² Laboratoire d'Optique Atmosphérique (LOA), Université de Lille, Faculté des Sciences et Technologies, Villeneuve d'Ascq, France

³ Finnish Meteorological Institute, Sodankylä, Finland

⁴ Seychelles Meteorological Authority, Mahé, Seychelles

⁵ Université de Moroni, Moroni, Comores

⁶ IOGA, Institute and Observatory of Geophysics of Antananarivo (IOGA) University of Antananarivo, Madagascar

⁷ Institut Supérieur de Technologie d'Antsiranana, B.P. 509, Enceinte Secren, Boulevard du Général Bayer, Antsiranana May 7, 2020

Introduction

- 2 Calibration
- Comparison between UV-OI Ground Based Measurements, Satellites Measurements and Modelling.
- I First characterisation of the UV in the Indian Ocean
- 5 Conclusion

E ► < E ►

Introduction: UV Indien Network

Network for the measurement of UV radiation and cloud cover in the south-western part of the Indian Ocean

- 9 stations in 5 countries of the Region and 8 scientific, institutional or meteorological partners:
 - LACy, Université de la Réunion, Réunion, France
 - IOGA, Institut de Géophysique d'Antananarivo, Madagascar
 - Institut Supérieur de Technologie de Diego Suarez, Madagascar
 - OPAR, Observatoire de Physique de l'Atmosphère de la Réunion, Réunion, France
 - Seychelles Meteorological Authority (SMA), Mahe, Seychelles
 - Agence Nationale de l'Aviation Civile et de la Météorologie, Moroni, Comores.
 - L'université des Comores, Moroni, Comores
 - Terre Australes et Antarctiques Françaises, St Pierre, Réunion, France

Figure: UV-Indien network map

< ロト < 同ト < ヨト < ヨト

Introduction (contd...)

Why monitor UV in the Indian Ocean ?

- CO2 is expected to accelerate the circulation of BDC (Butchart, 2014; WMO, 2018)
- An accelerated BDC circulation will induce a decrease of total ozone column in the tropics
- Decrease in mid-latitude UV and an increase in the tropics can be expected (Butler et al. 2016, Lamy et al. 2019)

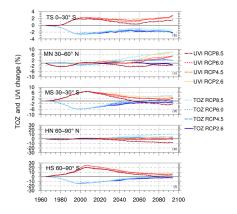


Figure: UV and Ozone Projection during the 21st Century. (Lamy et al., 2019)

4/27

- The study of the annual and inter-annual variability of UVR over the whole Western Indian Ocean basin.
- Validation of the outputs of numerical models for UVR forecasting.
- Long-term monitoring of UV in the context of climate change and projected ozone depletion of 2 to 4% (Lamy et al., 2019).
- Satellite validation. The instruments of Juan, Seychelles and Antananarivo are involved in the validation of the TROPOMI satellite (Lakkala et al., 2020).

∃ ► < ∃ ►</p>

Station	Location	Coordinates	Altitude asl	Instrument	Data since	Frequency	UTC+	
Saint-Denis	Reunion	20.902°S, 55.485°E	82m	BENTHAM DTMc 300	2009/12	15 min	+4	
Saint-Denis	Reamon	20.902 3, 55.465 E	02111	Radiometer Kipp&Zonen UVS-E-T 15-0124		5 min	, 4	
Maido	Reunion	21.079°S, 55.48°E	2200m	Radiometer Kipp&Zonen SUV-E 18-0020	2020/02	1 min	+4	
Anse Quitor	Rodrigues	19.758°S, 63.368°E	32m	Radiometer Kipp&Zonen UVS-E-T 16-0158	2017/06	1 min	+4	
				All Sky Camera	2019/09	1min	1	
Mahé	Seychelles	4,679 °S, 55.531 °E	15m	Radiometer Kipp&Zonen UVS-E-T 17-0207	2017/11	5 min	+4	
Antananarivo	Madagascar	18.916°S, 47.565°E	1370m	Radiometer Kipp&Zonen UVS-E-T 16-0159	2016/12	5 min	+3	
				All Sky Camera	2019/04	1 min		
Diego Suarez	Madagascar	12.28°S, 48.28°E	35m	Radiometer Kipp&Zonen SUV-E 18-0028	2019/11	1 min	+3	
Fort Dauphin	Madagascar	25.028°S, 46.995°E	10m	Radiometer Kipp&Zonen SUV-E 18-0030	2020/01	1 min	+3	
				All Sky Camera	2020/01	1 min		
Moroni	Moroni Comores 11.71°S 43.24°E 1		12m	Radiometer Kipp&Zonen SUV-E 18-0027	2019/12	1 min	+3	
				All Sky Camera	2019/12	1 min	1	
Juan de Nova	France	17.054°S, 42.71°E	10m	Radiometer Kipp&Zonen SUV-E 18-0029	2019/04	1min	+3	

6/27

3

Satellites and Model data used in this study.

Dataset	Platform	Туре	Resolution	Field used for computa	References		
		Type	Resolution	Ozone field used	Aerosol field used	References	
Bentham	Ground-Based	Spectrometer	dt = 15min	None	None	Brogniez et al., 2016	
Radiometer K&Z	Ground-Based	Radiometer	$dt = 1 \text{ or } 5 \min$	OMI	None	Cadet et al., 2020	
		Spectrometer	Daily		OMI	Tanskanen et al., 2006	
OMUVBd	Satellite (OMI)	(Measurement at 360nm	(Overpass/Solar Noon)	OMI	(Krotkov et al., 1998)	Arola et al, 2009	
		then Table Look-Up)	1.0 × 1.0 deg.		(Herman et al., 1999)	Levelt et al., 200	
TROPOMI	Satellite	Spectrometer (Measurement at 354nm then Table Look-Up)	Daily (Overpass/Solar Noon)	TROPOMI L2 total ozone column product (Garane et al., 2019).	Aerosol Climatology (Kinne et al., 2013)	Lindfors et al., 2018 Lakkala et al. 2020	
METOP	Satellite (GOME-2)	Spectrometer	Daily (local solar noon) 0.5 × 0.5 deg.	GOME-2A TOZ	MODIS Level 3	Kujanpää and Kalakoski, 2015	
CAMS	Model	Modelling	dt = 6 hours	Modelled	Modelled	Bozzo et al., 2015	
			Daily	SCIAMACHY			
TEMIS	Model Mod	Modelling	(local solar noon)	GOME-2A	No direct correction	Zempila et al. , 2017	
			0.5 x 0.5 deg.	MSR			

UV-Indien Radiometers are recalibrated with a frequency of \sim 2 year.

Calibration Procedure

- Radiometers repositionned on the Moufia super measurement site (University of Reunion Island coordinates)
- Co-located with the BENTHAM spectrometer, during a period of 3 or 4 months
- Recalibration with the BENTHAM spectrometer as a reference
- Bentham UV spectrometer, itself is calibrated every 3 months (Brogniez et al., 2016)
- Repositionning of the calibrated radiometers on their original site.

Radiometers Location and Calibration

Radiometer	Current Calibration	Next Calibration Date	Current Location
UVS-E-T 15-0124	Davos	05/2020	Saint-Denis
UVS-E-T 16-0159	Manufacturer	06/2020	Antananarivo
UVS-E-T 16-0158	Manufacturer	06/2020	Anse Quitor
UVS-E-T 17-0207	Manufacturer	06/2020	Mahé
SUV-E 18-0020	Bentham	03/2022	Maido
SUV-E 18-0028	Bentham	03/2022	Diego Suarez
SUV-E 18-0030	Bentham	03/2022	Fort Dauphin
SUV-E 18-0027	Bentham	03/2022	Moroni
SUV-E 18-0029	Bentham	03/2022	Juan de Nova

9/27

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

SUV-E Radiometers Recent Calibration Results

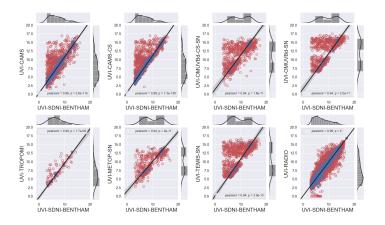


Figure: Absolute and Relative Difference Before (transparent dashed line) and After Calibration of the Radiometers

- Less than 10% Relative Difference at All SZA After Calibration
- Less than 0.5 UVI Units in Absolute Difference (AD)
- SZA depandancy is attenuated but remains for RD.

Correlation at ST-DENIS

Correlation between SDNI-BENTHAM and SAT/MODEL UVI

Correlation between UVI- BENTHAM and Sat/Model Measurements at

K. Lamy

UV-Indien Network

May 7, 2020 11 / 27

Differences at ST-DENIS

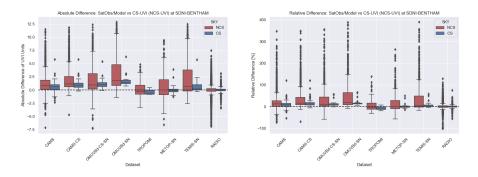


Figure: Boxplot of differences between UVI-BENTHAM and Sat/Model Measurements at ST-DENIS

э

	SAT/MODEL Comparison Against CS-UVI (NCS-UVI) at SDNI-BENTHAM									
STATS	UVI-CAMS UVI-CAMS-CS UVI-CAMUVED-CS-SN UVI-CAMUVED-SN UVI-TROPOM UVI-METOP-SN UVI-TEMIS-SN UVI-						UVI-RADIO			
MEAN-AD	0.58 +- 0.87 (1.27 +- 2.15)	0.95 +- 0.68 (1.97 +- 2.18)	1.29 +- 1.11 (1.88 +- 2.77)	1.78 +- 1.16 (3.10 +- 3.04)	-0.43 +- 0.41 (0.15 +- 1.62)	0.07 +- 1.08 (0.61 +- 2.47)	0.70 +- 1.23 (2.05 +- 3.02)	-0.02 +- 0.39 (-0.01 +- 0.81)		
MEAN-RD [%]	8.57 +- 14.81 (24.15 +- 46.17)	14.52 +- 13.08 (35.90 +- 49.71)	14.64 +- 15.07 (32.76 +- 56.30)	19.74 +- 15.67 (49.09 +- 66.42)	-7.02 +- 7.30 (7.64 +- 31.61)	2.55 +- 14.15 (16.39 +- 44.81)	7.78 +- 14.82 (35.53 +- 62.84)	0.02 +- 6.02 (0.59 +- 11.92)		
MEDIAN-AD	0.62 (0.82)	0.91 (1.15)	1.02 (0.97)	1.42 (1.75)	-0.60 (-0.30)	-0.12 (-0.01)	0.21 (0.72)	-0.01 (-0.02)		
MEDIAN-RD [%]	8.57 (12.44)	12.54 (16.58)	10.37 (10.51)	14.10 (18.10)	-7.03 (-4.95)	-0.98 (-0.06)	2.39 (6.89)	-0.08 (-0.41)		
NDATA	198 (1490)	198 (1490)	23 (889)	23 (889)	12 (105)	23 (445)	27 (1084)	2095 (15472)		

Figure: Boxplot of differences between UVI-BENTHAM and Sat/Model Measurements at ST-DENIS

- The differences shows UVI overestimation for CAMS, CAMS-CS, OMUVBd, OMUVBd-CS and TEMIS.
- For non-clear sky conditions, median overestimation ranges between 0.82 (CAMS) up and up to 1.85 UVI Units (OMUVBd).
- For clear-sky conditions, these differences decreases for CAMS, CAMS-CS, OMUVBd, and TEMIS. It does not change for
 MUVBd-CS.

Differences between ST-DENIS BENTHAM and Sat/Model

- For non-clear sky conditions, TROPOMI, METOP and RADIO shows the closest median differences of UVI with values of -0.30, 0.01 and 0.02 respectively.
- For clear-sky conditions, TROPOMI and METOP show higher median values.
- It is expected for the RADIO to be aligned with the BENTHAM since it has been recalibrated with the BENTHAM measurements.
- Mean values follow the same pattern than median values for every dataset. We can note the presence of a significant number of outliers in non-clear conditions, most of theses outliers does not appear in clear-sky conditions. These outliers were also shown on the correlation figure.

14/27

UVI Climatology

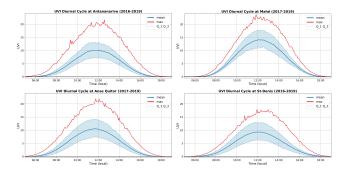


Figure: Diurnal Cycle of UVI at ST-DENIS. Mean UVI in blue, Max UVI in red, First and Third Quartile delimit the shade blue area.

3

・ロト ・ 四ト ・ ヨト ・ ヨト ・

UVI Climatology

- Mean UVI at local solar noon ranges between about 10 (Antananarivo, Plaine Corail, St-Denis) and up to about 14 UVI Units (Mahé, Seychelles)
- Difference is due to the latitude of theses stations, Antananarivo, Plaine Corail and St-Denis are at around 20° South, Mahé is at 4.6° South.
- At Mahé, SZA are always high during the year which induce higher Mean UVI.
- Max UVI can be as high as 20 UVI Units for all four stations.

Cloud measurements.

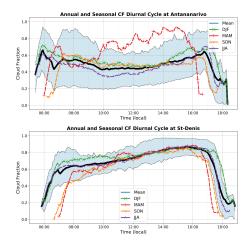


Figure: Diurnal Cycle of CF at ST-DENIS and ANTANANARIVO. Annual Mean Figure: Diurnal Cycle of CF at ST-DENIS and ANTANANARIVO. Annual Mean Black, First and Third Quartile delimit the shade blue area. Seasonnal Mean In greed (DJF), red (MAM), orange(SON) and purple (JJA).

May 7, 2020 17 / 27

Cloud measurements.

- Over St-Denis the mean diurnal cycle presents low value of CF during the morning and a rising CF during the day
- St-Denis is located on the northern part of Reunion Island
- Reunion Island is a mountainous island under the influence of the southeast trade winds which induce clouds formation on the southern part of the island during the morning.
- During the day, the clouds tends to overflow over the rest of the island which induce a rising CF during the day.
- Over Antananarivo, CF tends to be high on the morning, decrease throught the day and increase again later in the day.
- Over Antananarivo, the MAM period is caracterized by high CF starting at 10AM.

Conclusion

- 2016: Deployment of the first measurement sites (Reunion Island, Madagascar, Seychelles, Rodrigues) in 2016.
- 2019: Extension of this network to 4 other sites (Juan de Nova, Diego Suarez, Fort Dauphin and Grande Comoros)
- The first intercomparison results between UV-Indien Ground-Based Instruments and Satellites or Modelled UVI shows absolute differences between -0.5 to 1.78 UVI Units and relative differences between -7.02 to 19.74 % in clear-sky conditions
- Non-clear-sky conditions presents significant discrepancy between ground-based instruments and satellites/model
- UVI along with Clouds measurements will allows us to understand UVI variability in this region (Notably Extreme Maximas of UVI due to fractionnal cloud cover) and the discrepancy between
 Satellites/Model and Ground-Based measurements

э

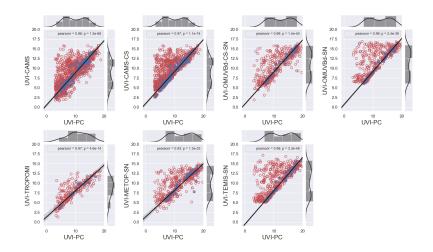
のへで 19/27

Supplements

- Correlation Figures for the remaining stations (Antananarivo, Plaine Corail, Mahé)
- Boxplot of AD and RD for the Remaining stations

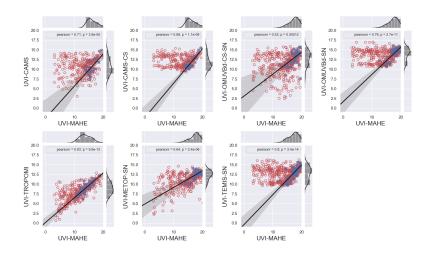
This research and UV Indien Network are funded jointly by European cooperation programme PO InterregV, Regional Council of Reunion Island and University of Réunion Island.

Correlation at Antananarivo, Madagascar


Correlation between ANTA and SAT/MODEL UVI

Correlation between ground-based UVI and Sat/Model Measurements Antananarivo, Madagascar K. Lamy UV-Indien Network May 7, 2020 21/27

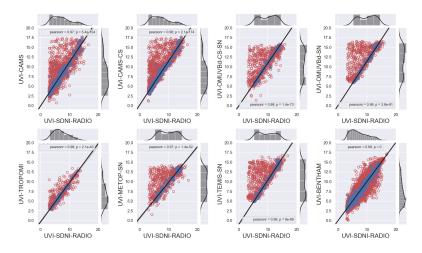
Correlation at Plaine Corail, Rodrigues


Correlation between PC and SAT/MODEL UVI

Correlation between ground-based UVI and Sat/Model Measurements Plaine Corail, Rodrigues K. Lamy UV-Indien Network May 7, 2020 22/27

Correlation at Mahe, Seychelles

Correlation between MAHE and SAT/MODEL UVI


 Correlation between ground-based UVI and Sat/Model Measurements at at Mahe, Seychelles

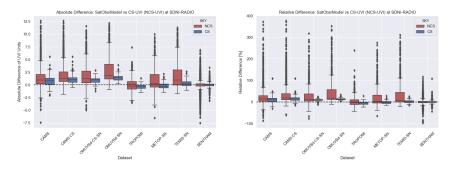
 K. Lamy
 UV-Indien Network

 May 7, 2020
 23/27

Correlation at Saint-Denis (RADIO), Reunion

Correlation between SDNI-RADIO and SAT/MODEL UVI

K. Lamy


< <p>A < </p>

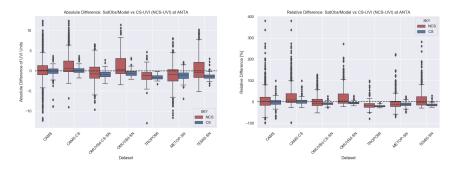
May 7, 2020 24 / 27

24/27

э

AD and RD at Saint-Denis (RADIO), Reunion

	SAT/MODEL Comparison Against CS-UVI (NCS-UVI) at SDNI-RADIO										
STATS	UV-CAMS UV-CAMS-CS UV-OM/V8-CS-SN UV-OM/V8-SN UV-TROPONI UV-TROPONI UV-TROPONI						UVI-TEMIS-SN	UVI-BENTHAM			
NEAN-AD	0.80 +- 0.98 (1.46 +- 2.24)	1.08 +- 0.84 (2.07 +- 2.22)	0.90 +- 0.62 (1.88 +- 2.50)	1.38 + 0.61 (2.99 + 2.69)	-0.34 +- 0.50 (0.01 +- 1.43)	-0.19 +- 0.71 (1.08 +- 2.47)	0.31 + 0.67 (1.95 + 2.71)	0.01+.0.38 (-0.02+.0.79)			
MEAN-RD [%]	10.52 + 14.55 (25.77 + 46.60	14.99 ++ 12.65 (35.85 ++ 48.85)	$8.90 \leftrightarrow 6.10$ ($30.91 \leftrightarrow 51.57$)	13.79 + 4.92 (45.84 + 59.79)	-5.44 +- 8.25 (3.89 +- 28.59)	-1.36 +- 7.62 (21.73 +- 47.31)	2.19 + 7.07 (32.77 + 56.13)	0.08 + 6.08 (-0.15 + 11.02)			
NEDIAN-AD	0.80 (0.96)	1.01 (1.30)	1.01 (1.19)	1.41 (1.89)	-0.30 (-0.24)	-0.26 (0.29)	0.20(0.94)	-0.00 (0.01)			
MEDIAN-RD [%]	10.53 (13.93)	14.17 (19.00)	8.82 (11.53)	12.91 (18.03)	-4.95 (-3.69)	-2.48 (3.33)	2.16 (8.41)	-0.05(0.12)			
NDATA	253 (1856)	253 (1856)	96 (754)	96 (754)	57 (308)	85 (711)	112 (903)	2109 (19635)			

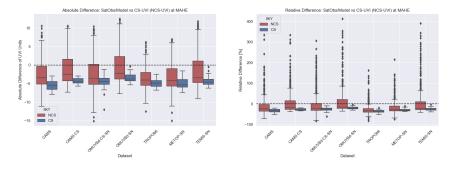

Figure: Boxplot of differences between ground-based UVI-RADIO and Sat/Model

UV-Indien Network

< 47 ▶

< E

AD and RD at Antananarivo, Madagascar



	SAT/MODEL Comparison Against CS-UVI (NCS-UVI) at ANTA									
STATS	UVI-CAMS	UVI-CAMS-CS	UVI-OMUVBd-CS-SN	UVI-OMUVBd-SN	UVI-TROPOMI	UVI-METOP-SN	UVI-TEMIS-SN			
MEAN-AD	-0.25 +- 1.39 (0.19 +- 2.81)	0.14 +- 0.78 (1.35 +- 2.34)	-0.89 +- 0.95 (-0.56 +- 2.58)	-0.56 +- 0.91 (1.27 +- 2.78)	-1.63 +- 0.63 (-1.26 +- 1.78)	-1.28 +- 1.35 (-1.08 +- 2.78)	-1.32 +- 0.93 (0.41 +- 2.83)			
MEAN-RD [%]	-2.60 +- 21.39 (7.27 +- 45.48)	2.75 + 15.65 (24.86 + 44.52)	-7.96 + 8.13 (2.13 + 31.69)	-4.59 + 8.01 { 22.52 + 43.15 }	-19.73 +- 5.19 (-12.88 +- 23.71)	-12.34 +- 12.04 (-4.29 +- 32.95)	-13.19 +- 8.73 (12.78 +- 42.21)			
MEDIAN-AD	-0.07 (0.08)	0.05 (0.62)	-0.95 (-0.76)	-0.57 (0.36)	-1.59 (-1.23)	-1.10 (-0.99)	-1.45 (-0.49)			
MEDIAN-RD [%]	-1.10 (1.32)	0.53 (9.18)	-9.07 (-7.87)	-5.95 (3.83)	-21.02 (-18.51)	-12.07 (-10.99)	-14.61 (-4.73)			
NDATA	226 (1444)	226 (1444)	87 (900)	87 (600)	30 (200)	82 (542)	103 (721)			

Figure: Boxplot of differences between ground-based UVI and Sat/Model Degurements at Antananarivo, Madagascar

< 3 >

AD and RD at Mahé, Seychelles

	SAT/MODEL Comparison Against CS-UVI (NCS-UVI) at MAHE									
STATS	UVI-CAMS	UVI-CAMS-CS	UVI-OMUVBd-CS-SN	UVI-OMUVBd-SN	UVI-TROPOMI	UVI-METOP-SN	UVI-TEMIS-SN			
MEAN-AD	-5.43 +- 1.38 (-2.38 +- 4.12)	-4.32 +- 0.79 (-0.92 +- 4.16)	-4.46 +- 1.72 (-2.49 +- 4.60)	-3.49 +- 1.06 (-0.49 +- 4.43)	-4.92 +- 1.07 (-3.57 +- 2.78)	-5.08 +- 1.33 (-3.17 +- 3.63)	-4.38 +- 1.07 (-1.48 +- 4.42)			
MEAN-RD [5]	-33.64 +- 8.61 (-6.01 +- 53.62)	-25.79 ++ 4.95 (8.87 ++ 62.27)	-25.52 + 8.93 (-4.53 + 55.85)	-20.04 +- 5.81 (14.49 +- 63.62)	-35.50 + 6.07 (-25.86 + 28.67)	-28.91 + 6.21 (-14.38 + 36.02)	-25.45 + 6.18 (5.29 + 63.94)			
NEDIAN-AD	-5.50 (-3.41)	-4.50 (-2.46)	-4.37 (-3.54)	-3.74 (-2.28)	-4.86 (-4.05)	-5.34 (-4.19)	-4.57 (-3.42)			
MEDIAN-RD [%]	-33.04 (-23.97)	-26.05 (-17.66)	-25.23 (-21.81)	-20.79 (-15.04)	-35.09 (-34.18)	-30.48 (-27.16)	-25.76 (-21.20)			
NDATA	27 (321)	27 (321)	48 (427)	48 (427)	42 (378)	44 (377)	58 (548)			

Figure: Boxplot of differences between ground-based UVI and Sat/Model Desurements at Mahé, Seychelles

< 47 ►

< E

May 7, 2020 27 / 27