Jean-Baptiste Koehl jean-baptiste.koehl@uit.no

Jean-Baptiste Koehl jean-baptiste.koehl@uit.no

Jean-Baptiste Koehl jean-baptiste.koehl@uit.no

Jean-Baptiste Koehl jean-baptiste.koehl@uit.no

≻ 420 Ma

Labrousse et al. (2008)

Core complexes exhumed in the late Silurian–Devonian due to normal top-north, top-west and top-east movements along bowed shear zones.

0

Braathen et al. (2018)

Core complexes exhumed in the late Silurian–Devonian due to normal top-north, top-west and top-east movements along bowed shear zones.

0

Braathen et al. (2018)

0 Core complexes exhumed in the late Silurian–Devonian due to normal top-north, top-west and top-east movements along bowed shear zones.

Subsequent Cenozoic extension led to the opening of the North Atlantic Ocean and movement of Svalbard c. 400 km to the south along dextral fault zones.

0

Nemcok et al. (2016)

Subsequent Cenozoic extension led to the opening of the North Atlantic Ocean and movement of Svalbard c. 400 km to the south along dextral fault zones.

0

Nemcok et al. (2016)

Subsequent Cenozoic extension led to the opening of the North Atlantic Ocean and movement of Svalbard c. 400 km to the south along dextral fault zones.

0

Nemcok et al. (2016)

2 Seismic data show that the WNW–ESE-striking faults that offset the Billefjorden Fault Zone correspond to reactivated Devonian normal faults merging into basement fabrics.

2 Seismic data show that the WNW–ESE-striking faults that offset the Billefjorden Fault Zone correspond to reactivated Devonian normal faults merging into basement fabrics.

Gasser (2014)

Gasser (2014)

1.16 0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

tilt (radian)

tilt (radian)

0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

1.16

tilt (radian)

1.16 0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

tilt (radian)

Koehl et al. (in prep. a)

0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

1.16 0.95 0.75

tilt (radian)

0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.21 -1.31 -1.42 tilt (radian)

1.16 0.95 0.75 0.56 0.37 0.19

Koehl et al. (in prep. a)

1.16 0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

tilt (radian)

0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

1.16 0.95

tilt (radian)

1.16 0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

tilt (radian)

1.16 0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

tilt (radian)

1.16 0.95 0.75 0.56 0.37 0.19 0.00 -0.17 -0.33 -0.47 -0.61 -0.73 -0.84 -0.94 -1.03 -1.12 -1.21 -1.31 -1.42

tilt (radian)

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

2 Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

Koehl (in prep.)

3

3

3

3

3

Molnar et al. (2017)

3

3

3

3

Molnar et al. (2017)

3

3 WNW–ESE-striking Timanian and transform faults may, alone, have accommodated the movement of Svalbard from next to Greenland to its present position, c. 400 km away.

Svalbard's three basement terranes were already accreted in the late Neoproterozoic, thus suggesting that Arctic tectonic plates have been much more stable than expected.

3

Svalbard's three basement terranes were already accreted in the late Neoproterozoic, thus suggesting that Arctic tectonic plates have been much more stable than expected.

3

Svalbard's three basement terranes were already accreted in the late Neoproterozoic, thus suggesting that Arctic tectonic plates have been much more stable than expected.

3

