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The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N–S-trending fabrics, folds and faults.
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Core complexes exhumed in the late Silurian–Devonian due to normal top-north,
top-west and top-east movements along bowed shear zones.
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In Svalbard, Pennsylvanian rifting led to the formation of thick N–S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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0 In the Cenozoic, opening of the Labrador Sea and Baffin Bay led to transpression and the
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0 Subsequent Cenozoic extension led to the opening of the North Atlantic Ocean and 
movement of Svalbard c. 400 km to the south along dextral fault zones.
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A major N–S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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In Isfjorden, lens-shaped reflections may represent incisement processes
commonly related to core complex exhumation.
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The potential continuation of the Bockfjorden Anticline in Isfjorden appears offset
by > 10 km left-laterally, and c. 5 km vertically down to the south. 
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Gravimetric, aeromagnetic and seismic data in the Barents Sea show the existence of
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In Storfjorden, a high-angle brittle fault folding the seafloor merges with a suite of
moderate amplitude reflections possibly representing a major WNW–ESE-striking thrust.
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Bathymetry data in Billefjorden show that the N–S-striking Billefjorden Fault Zone is
left-laterally offset by WNW–ESE-striking fault-related escarpments.
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Seismic data show that the WNW–ESE-striking faults that offset the Billefjorden Fault Zone 
correspond to reactivated Devonian normal faults merging into basement fabrics.
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Bathymetry data in Kongsfjorden show that WNW–ESE-trending fault-related escarpments
offset a N–S-striking Cenozoic fault by 4.5 km left-laterally.
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On the 29th of March 2016, an earthquake coinciding with the location of the WNW–ESE-
striking Timanian thrust struck near the southwestern coast of Edgeøya.
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Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.2
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North of Bjørnøya, potential NNE-verging Timanian thrusts were reactivated/overprinted
during Devonian–Carboniferous extension, early Cenozoic deformation and at present day.
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The Mid-Ocean Ridge is segmented by major transform faults that strike parallel to 
Timanian faults and topographic highs of continental origin (e.g., Hovgård Ridge).
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The Hovgård Ridge may represent the western continuation of a Timanian thrust that was
ripped off Svalbard during the breakup of the North Atlantic Ocean.
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Gas flares and leakage along the crest of the Vestnesa Ridge are most likely related to
gas hydrate destabilization.
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The Vestnesa Ridge may represent relict Timanian basement, which may have controlled
the formation of an oceanic core complex, resulting in fracturing of gas hydrates.
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The Knipovich and Molloy ridges likely formed along oblique Caledonian weakness zones, 
while major transforms formed subparallel to Neoproterozoic (Timanian?) thrusts.
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Earliest Mississippian amphibolite facies metamorphism and down-west kinematics
in western Svalbard may be related to core complex exhumation.
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Basement ridges northwest/west of Spitsbergen may have exhumed as metamorphic core
complexes and represent the northern continuation of Prins Karls Forland basement rocks.
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WNW–ESE-striking Timanian and transform faults may, alone, have accommodated the
movement of Svalbard from next to Greenland to its present position, c. 400 km away.
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Hundreds-of-kilometer dextral displacement along N–S-striking faults (e.g., De Geer Zone) 
is not required to explain Svalbard’s (c. 400 km) southward motion in the Cenozoic.
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