

FTIR-based spectral line data of the v_3 band of NO₂ at 6.3 μ m and multi-component impurity analysis of NO₂ reference gases within the scope of the EMPIR MetNO2 project

EGU GA 2020 web presentation – Session AS5.11 Atmospheric gases and particles: metrology, quality control and measurement comparability

Gang Li, Mi Eon Kim, Viktor Werwein, Alexandra Lüttschwager, Javis Nwaboh, Olav Werhahn, Volker Ebert

- 1. Experimental setup
- **2.** Result of static measurements
- 3. Results of dynamic measurements
- 4. Future work

FTIR method for impurity analysis in NO₂ standards

Description	
Fully characterise the major impurities in the NO ₂ reference gas standards (NOy compounds - especially HNO3, NO, water vapour).	

NO₂ line data measurements

Description

Measure NO_2 line data at the wavelength range selected in A3.1.3 to support accurate NO_2 amount of substance fraction measurements and the development of spectroscopic transfer standards.

Experimental setup: Flow measurements

Dynamic measurement: gas flow chart

Static measurements: impurities

Black: FTIR spectrum of 979 μ mol/mol NO₂ in air at 807 mbar at 296 K in a 6.4 m absorption path after a day from initial filling.

Colour: Simulation of NO₂ and impurities using the HITRAN database.

Impurities change dramatically with time in static measurements.

Impurities reconstructed to t=0

Ν	Molecule	Amount Fraction (μmol/mol)	Spectral band	ССQM-К74- 2018* (µmol/mol)
1	NO ₂	990(15); certified value from AirLiquide 979(20)	{ $v_1 + v_3$, $v_1 + 2v_2$ }, 2900 cm ⁻¹	10.119(16) MY9743_7
2	NO	Not found in spectrum	Fundamental, 1880 cm ⁻¹	-
3	N ₂ O	0.790(40)	v_{3} , 2224 cm ⁻¹	0.027(5) MY9743_7
4	HNO ₃	0.430(80)	v ₂ , 1709.5 cm ⁻¹	0.108(36) Cyn. 614632 0.588(73) BIPM cyn.
5	CO ₂	0.160(20)	v_{3} , 2349 cm ⁻¹	0.110(92) MY9743_7
6	СО	Not found in spectrum	Fundamental, 2143 cm ⁻¹	0.0141(19) MY9743_7
7	H ₂ O	Not found in spectrum	v ₂ , 1595 cm ⁻¹	0.0105(87) MY9743_7
8	N ₂ O ₅	Not found in spectrum	X-sections from HITRAN 1750 cm ⁻¹	-

*Value from multiple cylinders, using GC, FTIR

FTIR spectrum of 979 μ mol/mol NO₂ in air.

Relative changes of the **integral band intensity** as a function of time.

Intensity decrease dramatically with time in an unpredictable way. Static measurement is not suitable for accurate line intensity determination.

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Dynamic measurements: spectra

Flow rate:	200 sccm
Integration time:	9 hours
Signal stability:	no change within
Pressure uncertainty:	0.3% (k=2)
Path uncertainty:	0.08% to 0.25%
T inhomogeneity:	0.15 K

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

9h

The HITRAN database: NO₂

Transition intensities • 44. (14N)(16O)2 1.200e-19 1.000e-19 8.000e-20 6.000e-20 4.000e-20 2.000e-20 1560 1580 1640 1660 1600 1620

Doublets with spinsplitting typically around 0.002 cm⁻¹

NO₂ line intensity in HITRAN is unchanged since HITRAN96, which is based on Ref. 2.

Intensity uncertainty given by HITRAN 2-5%.

[2] A. Perrin et al. Journal of Molecular Spectroscopy 154, 391-406 (1992).

Example Voigt⊗ILS fit using PTB program

Amount fraction: 1%, P: 0.3%, L: 0.2%, ILS: 0.1%, Area: 0.1% Note: HITRAN uncertainty 2-5%.

Dynamic measurements: Impurities and dimer

Future work

- To improve accuracy of the NO₂ line intensities in the v3 band.
- To quantify impurity in the 1 ppm NPL PRM, using the 40 m silconert coated ICL multipass cell.
- To repeat measurements to check the stability of cylinder, re-assuring line intensity accuracy.

Acknowledgement

- PTB internal funding devoted to the participation in the EMPIR MetNO2 project
- Technical support from Kai-Oliver Krauss
- Discussions and support MetNO2 project partners

Acknowledgement

PTB is member of the European Metrology Network for Climate and Ocean Observation (https://www.euramet.org/europeanmetrology-networks/climate-and-ocean-observation/)

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Dr. Gang Li Telefon: +49 531 592-3235 E-Mail: Gang.Li@ptb.de

www.ptb.de

© PTB 2020. All rights reserved