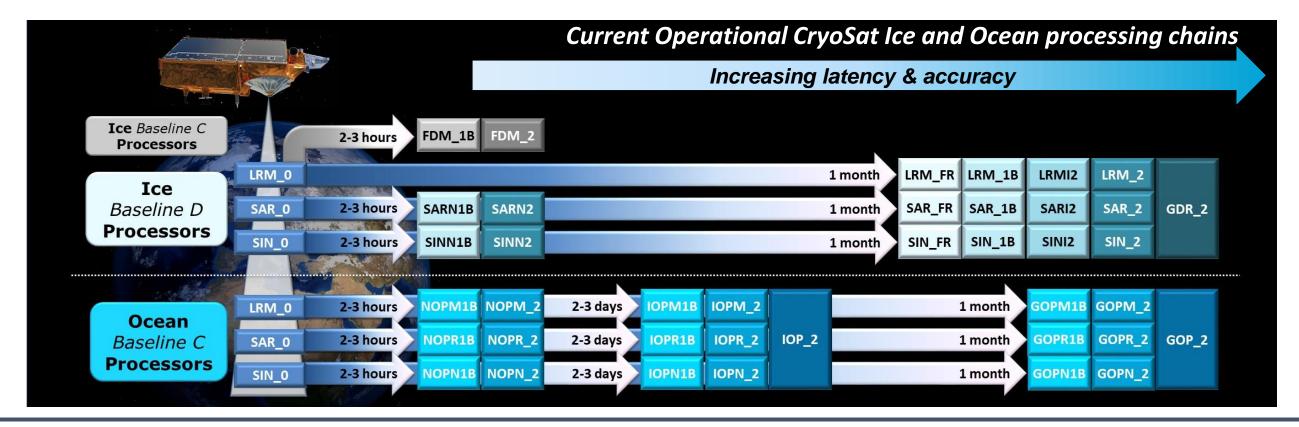

Quality Status of the CryoSat Data Products

E. Webb⁽¹⁾, B. Wright⁽¹⁾, M. Meloni⁽²⁾, J. Bouffard⁽³⁾, T. Parrinello⁽³⁾, S. Baker⁽⁴⁾, D. Brockley⁽⁴⁾, T. Geminale⁽⁵⁾, M. Scagliola⁽⁶⁾, M. Fornari⁽⁷⁾ ⁽¹⁾ Telespazio VEGA UK Ltd (UK), e-mail: Erica.Webb@telespazio.com; ⁽²⁾ SERCO c/o ESA/ESRIN (Italy); ⁽³⁾ ESA/ESRIN (Italy); ⁽⁴⁾ Mullard Space Science Laboratories (MSSL) (UK); ⁽⁵⁾ Exprivia (Italy); ⁽⁶⁾ ARESYS (Italy); ⁽⁷⁾ RHEA c/o ESA/ESRIN (UK).

CryoSat Mission


- Launched in April 2010, CryoSat is **ESA's dedicated ice mission**.
- It was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers.
- Going beyond its original mission objectives, CryoSat is now a valuable source of data for the oceanographic community.
- CryoSat's sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.
- To enable their full scientific and operational exploitation, the CryoSat products are continuously evolving, through updates and improvements to the Instrument Processing Facilities (IPFs).

CryoSat: 10 years in orbit! Mission extension now confirmed until 2021.

Data Processing

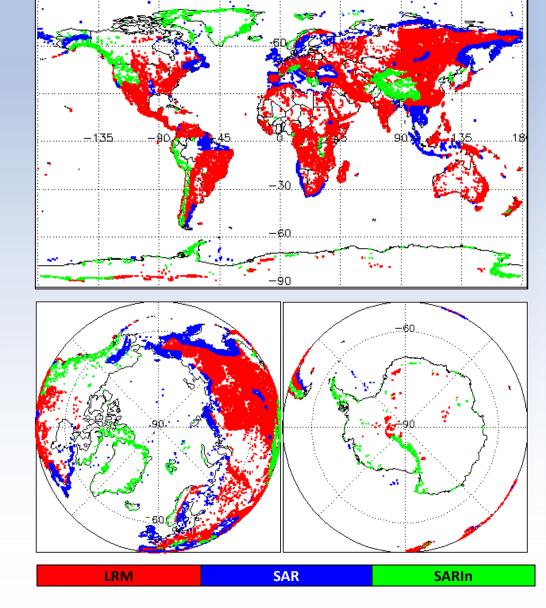
- SIRAL operates in three modes: Low Resolution Mode (LRM), Synthetic Aperture Radar (SAR) mode and SAR Interferometric (SARIn) mode.
- CryoSat Level 0 (L0) data is processed operationally to science Level 1B (L1B) and Level 2 (L2) products using two independent processing chains: Ice and Ocean. Both processors generate a range of operational products with increasing latencies and accuracies.

Operational Quality Control

- The Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) is a Telespazio VEGA UK lead consortium providing support to the ESA/ESRIN Sensor Performance and Algorithms (SPPA) office.
- Since launch, QA4EO has performed routine Quality Control (QC) on all operational and reprocessed CryoSat products.
- QA4EO also plays an important role throughout the IPF evolution and validation process, providing support to software development, test data set generation and verification.

Daily Product Quality Monitoring

- Production completeness & processing failures monitoring
- Product format, header and quality checks
- Auxiliary Data File (ADF) availability and usage
- Analysis of key measurement parameters


Daily QC reports are uploaded to the ESA CryoSat webpage https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat/.

Data Coverage by Mode; CryoSat Offline product Daily Report

Long Term Product Quality Monitoring

QA4EO use C2QC, the Horus Tool, and MSSL Quality Assurance (QA) monitoring facility for long term analysis of:

- SIRAL instrument health and data availability
- Star tracker attitude parameters
- Key L2 parameters, such as freeboard and Sea Surface Height Anomaly
- Retracker failure statistics and L2 quality flags
- Crossover analysis
- Availability and magnitude of external corrections
- Results are presented in Monthly Quality reports, and uploaded to the ESA CryoSat webpage: <u>https://earth.esa.int/web/guest/missions/esa-operational-eomissions/cryosat/cyclic-reports</u>

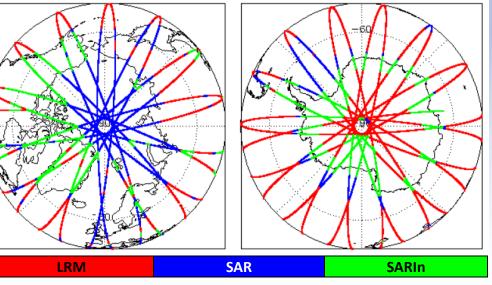
Loss of Track in L0 data during February 2020

Current CryoSat Ice Processor: Baseline-D

IPF2 vN1.2

Since **May 2019** the CryoSat ice products are generated with **Baseline-D**. This major processor upgrade implemented several improvements to the L1B and L2 products, which are expected to have a positive impact on the scientific exploitation of CryoSat measurements over land ice and sea ice.

Key features of Baseline-D:


 Generation of NRT SAR & SARIn products in near real time (2-3 hours after acquisition) with the L0 Star Tracker products instead of delayed STR_ATTREF.

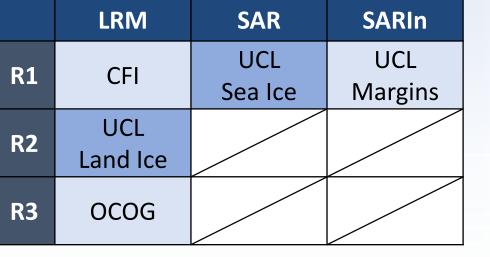
Current CryoSat Ocean Processors: Baseline-C COP IPF1 v3.7 COP IPF2 v3.9

Since **November 2017** the CryoSat ocean products are generated with **Baseline-C**. This major processor upgrade implemented evolutions to improve the CryoSat ocean product quality and performance and to promote their application to oceanographic and climate studies.

Key features of Baseline-C:

 Generation of ocean products for all data acquisition modes (LRM, SAR and SARIn), therefore providing complete data coverage for ocean users.

IPF1 vN1.1


L2 SARIn freeboard computation activated to provide freeboard values over the Arctic Ocean and marginal polar regions.

SARIn mode gap 🖌 🛴

Baseline-C: Mean Freeboard /m from L2 SAR (Dec 2013), 10km gridded [MSSL]

Baseline-D: Mean Freeboard / m from L2 SAR & SARIn (Oct 2019), 10 km gridded [MSSL]

- Laxon-Ridout sea ice retracker improved for Arctic and Antarctic sea ice retracking
- Tuning of the UCL land ice retracker
- These changes are expected to bring a reduction in noise and number of bad-flagged data points compared with Baseline-C.

CryoSat Baseline-D Retrackers

- New stack peakiness parameter added to L1B SAR & SARIn products (stack_peakiness_20_ku), useful for detecting leads and could aid sea ice discrimination and freeboard computation at L2.
- Product format change from Earth Explorer Format to Network Common Data Form (**netCDF**).

- Near Real Time Ocean Products (NOP), generated 2-3 hours after data sensing acquisition.
- Pole-to-Pole (P2P) products for Intermediate Ocean Products (IOP) and Geophysical Ocean Products (GOP). These are concatenated multi-mode L2 products with half-orbit coverage.
- Pseudo-LRM (PLRM) estimates included in SAR & SARIn ocean products which show good consistency with LRM measurements.
- Innovative new SAR and SARIn retracking algorithm: SAR Altimetry MOde Studies & Applications (SAMOSA).
- Existing LRM retrackers refined.
- Improved models and corrections.
- New Wet Tropospheric Correction (WTC) computed from the GNSS-derived Path Delay Plus (GPD+) algorithm, which combines all available observations to improve WTC for radar altimetry. Developed by University of Porto.

XXX			
			P##########
	55		SCN CON SS
	The second se	-30. 4. 37	

GPD+ Wet Tropospheric Correction/ m, for L2 GOP (example from 1st – 3rd January 2011)

LRM	SAR	SARIn
Ocean MLE-4	SAMOSA	SAMOSA
Ice OCOG	DPM 2.3	DPM 2.3

Ocean Baseline-C Retrackers

	New Baselir	ne-C Models		
Mean Sea Surface	face CNES-CLS15			
Ocean Loading Tide Height	GOT 4.10c	FES2014b		
Non-Equilibrium Ocean Tide	FES2	2014b		
Mean Dynamic Topography	DTI	J15		
Ocean Depth/ Land Elevation	AC	E-2		
	New Baseline-C Correction			
Wet Tropospheric Correction	GP	D+		
Sea State Bias Correction	Empirical sc CryoSat Baseli	olution from ne-B LRM data		
New models and corr	ections at Base	line-C		

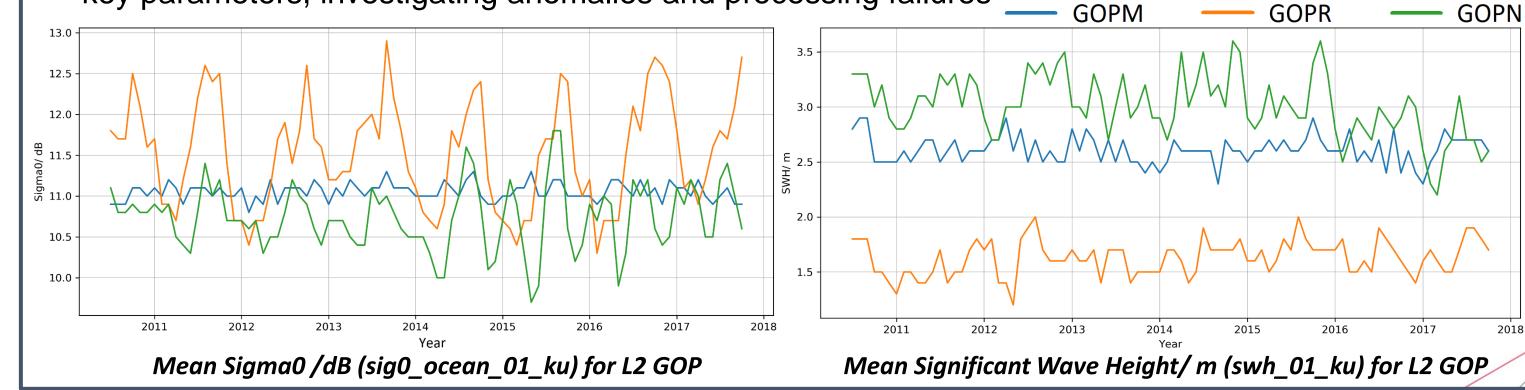
CryoSat 3rd Ice Reprocessing Campaign

IPF1 vN1.1 IPF2 vN1.1

 The 3rd CryoSat Ice Reprocessing campaign is underway at the Climate, Environment & Monitoring from Space (CEMS) facility to reprocess all CryoSat Ice products to Baseline-D.

CryoSat 2nd Ocean Reprocessing Campaign

COP IPF1 v3.7 COP IPF2 v3.9


• The 2nd CryoSat Ocean Reprocessing campaign recently completed at the Centre National

- Reprocessing campaign coverage: 16th July 2010 28th April 2019
- QA4EO supported the reprocessing team during integration and testing of the IPFs, data consolidation, verification of test data and investigation of processing anomalies.
- QA4EO are now performing systematic QC of a 3-day data sample from each month generated, investigating any product anomalies and monitoring processing failures.
- Reprocessing is in the final stage and due to be completed by mid-May 2020.

Proc	2019	2018	2017	2016	2015	2014	2013	2012	2011	2010
Data										
Data										
Data										

Processing in progress
Data processing & QC complete
Data processing & QC complete;
Data available to users

- d'Etudes Spatiales (CNES) to reprocess all GOP data to Baseline-C.
- All L1B, L2 and P2P GOP for the period 16th July 2010 7th October 2017 have now been reprocessed and disseminated to users.
- QA4EO performed systematic QC of a 3-day data sample from each month generated, monitoring key parameters, investigating anomalies and processing failures

Data Access: Registered users can access the reprocessed Ice and Ocean products from the CryoSat Science Server (**science-pds.cryosat.esa.int**). Data is uploaded after reprocessing of each 6-month batch is complete.

Known Data Anomalies: Users can access a full list of the known anomalies and planned evolutions for the current Ice and Ocean processors here: <u>https://earth.esa.int/web/guest/missions/cryosat/product-status</u>

EGU 2020. Session CR2.6 Remote Sensing of the Cryosphere. Thu, 07 May, 08:30–12:30. https://meetingorganizer.copernicus.org/EGU2020/session/34940