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Zircon petrochronology

CA-ID-TIMS U/Pb dating

Workflow:

* Imaging

* In-situ chemical and isotopic
analysis

e Chemical abrasion

* High-precision dating

e Solution chemical and isotopic
analysis
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Residence in magma and recycling processes in magmatic systems
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A conceptual model for arc systems

* Much (most?) of the zircon grows at a lower to middle crustal level
« Magma storage is “cold”: crystal mushes, which episodically get

rejuvenated during recharge events

» Mixing of melt batches from different origin and their crystals

* Incremental accretion in the upper crust

* relative temporal relationships in the field are
younger than zircon crystallization
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injection of mafic melts with recycled zircons
from lower crustal residual melts

hybrid melts

residual melts

mafic melts
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« Zircon is not crystallizing directly from tholeiitic melt but
from evolved residual melt

» T estimates for zircon crystallization are at ~900-700°C

« zircon is thus forming after >90 vol% crystallization of
major minerals

Zircon growth in mafic magmatic systems

Zircon is surprisingly common in tholeiitic MOR
gabbros and plagiogranites, sills and dykes of
Large Igneous Provinces

Example: interstitial zircon in Bushveld magmas
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Zircon growth in mafic magmatic systems

Zircon can date emplacement of the dyke/sill complex of a LIP at highest temporal resolution

Example: North Atlantic Magmatic Province
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Their age variation, however,
indicates participation of an
inherited component
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Alternative if there is no zircon in the rock: Baddeleyite (ZrO,)
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Example from a CAMP basaltic dyke; Schaltegger and Davies (2017); Davies et al. (in prep.)

* baddeleyite U-Pb ages are younger than chemically abraded zircon ages

* Main problem with baddeleyite petrochronology is that reliable age information can not be obtained at
present due to unresolved Pb loss



Conclusions

" Arcplutons grow through incremental addition of small ( - to bigger) melt batches

" The melts were saturated in zircon at intermediate crustal levels, zircon was transported in the
melt to upper crustal level

% Zircon crystals were also recycled from previous crystal mushes that were remobilized through
incoming hot magma

N Therefore few zircons are in chemical and isotopic equilibrium with the present-day host rock

" Zircon in residual melts of mafic (tholeiitic) systems only saturates after >90% fractional
crystallization

. Excess age variation concurrent with Hf isotopes indicates that zircon in residual melts of mafic

systems may at least partly nucleate around tiny relics of inherited zircon



