

Uncertainties of climate and CO₂ impacts on carbon stocks and biome distribution in Africa

Carola Martens, Thomas Hickler, Claire Davis-Reddy, Francois Engelbrecht, Steven I. Higgins, Graham P. von Maltitz, Guy F. Midgley, Mirjam Pfeiffer, and Simon Scheiter

EGU General Assembly 2020 – Sharing Geoscience Online Session BG3.15

Future vegetation projections are constrained by uncertainties

- Climate change is expected to have profound impacts on biodiversity and ecosystem services in Africa.
- But vegetation projections are constrained by uncertainties regarding
 - strength and impact of climate change,
 - socioeconomic futures, and
 - CO_2 fertilisation effects.

We used an ensemble of DGVM simulations with the aDGVM to look at the uncertainties.

The aDGVM is a vegetation model for grass-tree ecosystems.

aDGVM – adaptive Dynamic Global Vegetation Model

The aDGVM ...

- ... was developed for tropical ecosystems;
- ... simulates individual trees, and plants can adjust allocation and phenology to the environment;
- ... simulates different vegetation types: savanna trees, forest trees, C₄ grasses, C₃ grasses;
- ... includes fire dynamics, and impacts on trees are influenced by tree height.

Ensemble simulations to deal with uncertainty

We used an ensemble of aDGVM simulations to look at the uncertainties in vegetation projections.

We forced the aDGVM with climate projections from 6 different

- General Circulation Models (GCMs),
- for two different Representative Concentration Pathways (RCP4.5 & RCP8.5), and
- two CO₂ scenarios (increasing according to RCP scenario & fixed at 400ppm).

ensemble of 24 aDGVM simulations

Differences within the ensemble allow quantification of different uncertainties in vegetation projections.

 $\mathbf{\hat{I}}$

BY

(cc)

Ensemble of 24 aDGVM simulations with 6 GCMs, 2 RCPs, 2 CO₂ scenarios

aDGVM simulated carbon stocks in aboveground biomass

Mean +/- SD

RCP4.5, fixed CO_2 RCP4.5, elevated CO_2 RCP8.5, fixed CO_2 RCP8.5, elevated CO_2

Literature values

- + Avitabile et al., 2016
- × Baccini et al., 2012
- * Saatchi et al., 2011

aDGVM simulates stronger CO_2 effect than elevated CO_2 experiments

Population dynamic effects are accounted for in aDGVM, but large uncertainties remain

population dynamic effects like tree saplings escaping fire zones more easily under eCO2.

Tree sapling

CC

Considerable biome shifts by the end of the century for RCP4.5 under elevated CO_2

CC

Biome shifts from 2000-2019 to 2080-2099 under elevated CO₂ for consensus biome

➔ Woody encroachment into grassy biomes across both RCPs under elevated CO₂

→ 25% (RCP 4.5) and 29% (RCP 8.5) of terrestrial Africa are projected to experience biome shifts

Biome changes from 2000-2019 to 2080-2099 for the four RCP-CO₂-scenario combinations

Area change of consensus biomes is uncertain for woody biomes

Biome changes from 2000-2019 to 2080-2099

- Fewer biome changes with fixed CO₂
- Fixed-CO₂ scenarios are dominated by transitions from forest to woodland or savanna
- Even for RCP4.5, a less extreme emission scenario, considerable biome changes are projected.

Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies

- Future biome changes due to climate and CO₂ change are likely in large parts of Africa.
- CO₂ effects in combination with RCP scenarios caused greater uncertainty in projected ecosystem changes than downscaled GCM projections.
- Climate mitigation and adaptation response measures that rely upon vegetation-derived ecosystem services will need to account for alternative climate futures.

SENCKENBERG

Thanks for your attention!

SPONSORED BY THE

Federal Ministry of Education and Research

Ensemble simulations reveal uncertainties in vegetation projections in Africa due to CO₂ and RCP scenarios

Carola Martens

Institute of Physical Geography, Goethe University Frankfurt

Introduction

Climate change will cause biome shifts in Africa with impacts on biodiversity and ecosystem services.

Uncertainties in climate change impacts and the effects of **elevated atmospheric**

Take home message

- Ensemble simulations disentangle sources of uncertainty in climate impact modeling.
- Uncertainties in climate future and CO₂ fertilisation effect result in **alternative** future vegetation states.
- Climate mitigation and adaptation need to consider alternative vegetation futures.
- Despite uncertainties, today's policy decisions shape climate change

CO₂ on ecosystems challenge projections of future ecosystem states.

We identified uncertainties in vegetation states in Africa until 2099 with **ensemble simulations** using the **adaptive Dynamic Global Vegetation Model** (**aDGVM**, Scheiter & Higgins 2009).

Simulation design

aDGVM ...

- ... simulates potential natural vegetation, ... simulates ecological processes from leaf to plant population level, ... simulates tree individuals,
- ... is forced with climate and soil data.

Ensemble of 24 aDGVM runs with highresolution climate data for Africa (Archer et al. 2018) and CO_2 scenarios (Fig. 1):

(i.e. RCP scenario), and thus future environments.

Results

- Many regions at risk of biomass changes and biome shifts
- Strongest effect on carbon storage variability through interaction effects between CO₂ and RCP scenario
- Projected woody encroachment and shifts to tree-dominated biomes under elevated CO₂ (Fig. 3b) correspond to biomass increases (Fig. 2)

Total carbon in aboveground biomass in Africa from 2000-2099

Figure 1: Mean total carbon in above-ground biomass [Pg C] in Africa from 2000 to 2099 for the four RCP and CO₂ scenario combinations. Standard deviation (SD) is derived from the six GCM runs per scenario.

Biome shifts from 2000-2019 to 2080-2099

(a) 2000-2019

(b) 2080-2099

- 2 Representative Concentration Pathways (RCPs 4.5 & 8.5)
- 2 CO₂ scenarios (elevated CO₂) corresponding to RCPs 4.5 & 8.5, and CO_2 fixed at 400ppm),
- 6 downscaled General Circulation Models (GCMs)

- Low-impact scenarios (both RCP 4.5 scenarios) with considerable vegetation changes
- Lower projected change for both RCP 4.5 scenarios than for RCP 8.5 scenarios
- Alternative climate futures lead to alternative future vegetation states.

ensemble simulations

Literature

Archer, E., Engelbrecht, F. et al. 2018: Seasonal prediction and regional climate projections for southern Africa, *Biodiversity & Ecology*, 6, 14-21

Scheiter, S. & Higgins, S.I., 2009: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. *Global Change Biology* 15, 2224-2246.

Acknowledgements

I would like to thank the Federal Ministry of Education and Research (BMBF) for funding, EMS Africa, Goethe University, Senckenberg Society for Nature Research, and T. Hickler & S. Scheiter

SENCKENBERG **GOETHE** world of biodiversity

UNIVERSITÄT FRANKFURT AM MAIN

Further information

• Email: carola.martens@senckenberg.de

 http://adgvm.wordpress.com for more details on the **aDGVM** project

 https://emsafrica.org for more information on the EMS Africa project