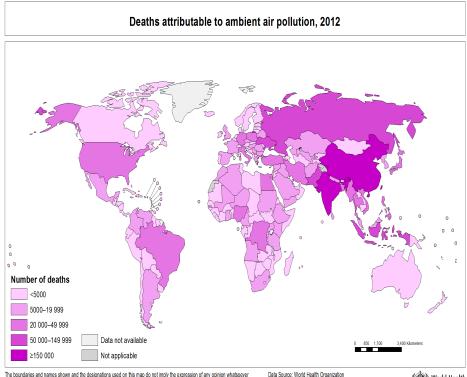


HOW ATMOSPHERIC SIMULATION CHAMBERS CAN HELP TO INVESTIGATE THE IMPACT OF AIR QUALITY ON HEALTH

Patrice Coll (1), Mathieu Cazaunau (1), Jean-François Doussin (1), Edouard Pangui (1), Aline Gratien (1), Paola Formenti (1), Isabelle Coll (1), Gilles Foret (1), Cécile Gaimoz (1), Vincent Michoud (1), Claudia Di Biagio (1), Elie Al Marj (1), Marion Blayac (2), Zhuyi Lu (2), Audrey Der Vartanian (2), Stéphane Jamain (2), Geneviève Derumeaux (2), Maria Pini (2), Sophie Hüe (2), Frédéric Relaix (2), Jorge Boczkowski (2) and Sophie Lanone (2).

LISA, UMR CNRS 7583, Université de Paris, Université Paris-Est, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.

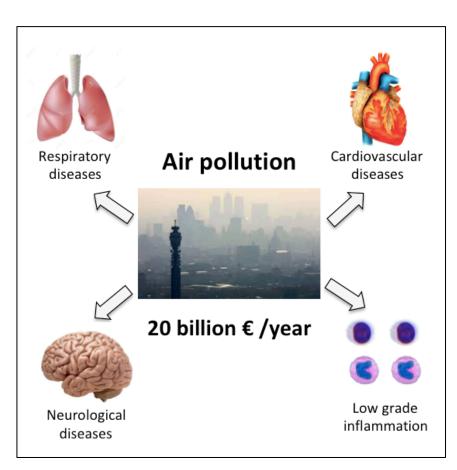
IMRB - Inserm U955, Faculté de Médecine de Créteil, 8 rue du Général Sarrail, 94010 Créteil cedex, France.


1. Context

- 2. The PolluRisk platform
- **3. The CESAM chamber**
- 4. Illustration : the Beijing case
- 5. A few results

6. the H2020 REMEDIA project

Very contemporary context



The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever Data Source: World Health or no hep and the World Health Organization concerning the degli status of any country, territory, city or area or of its authonities, or concerning the dedimination of its frontiers to boundaries. Dotted and dashed lines on maps represent approximate border lines World Health Organization for whom the may not yet be full greement.

Utala Source: vvono Healtin Organization Map Production: Information Evidence and Research (IER) World Health Organization © WHO 2016. All rights reserved.

Map of the distribution of deaths attributable to air pollution (Source: WHO, 2012)

How to study these Health impacts ?

• Epidemiologic studies:

<u>Objective:</u> to establish an association between exposure to certain substances and the occurrence of diseases in humans

- Exposure qualification difficult to establish
- Difficult to link pollutants and diseases

• Experimental studies :

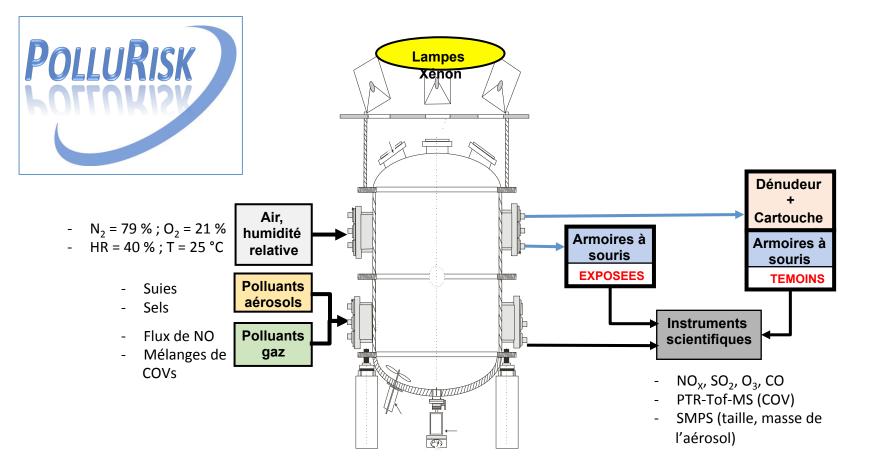
Objective: cells/organisms/animals exposure

- Exposure(s) control
- One study per pollutant
 - Non representative of the polluted atmosphere
 - Can not reproduce the synergy of pollutants

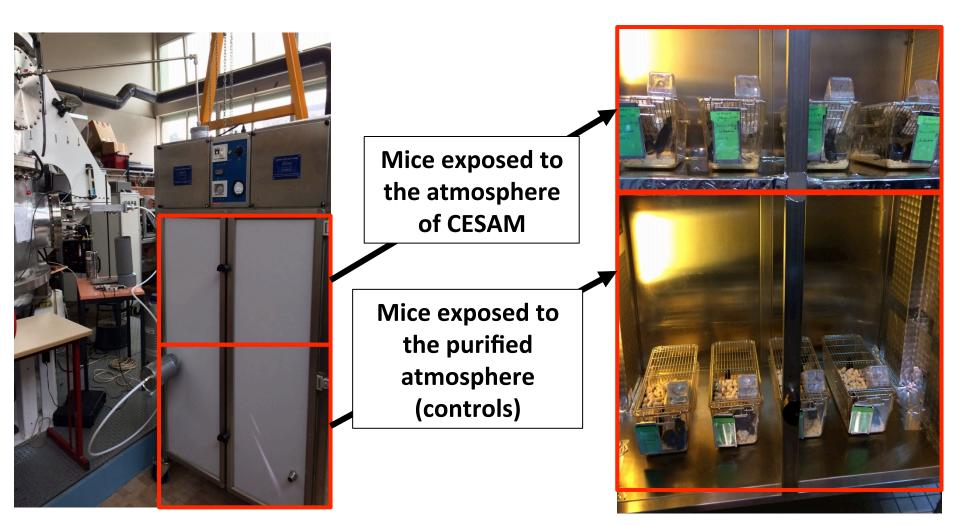
to simulate Atmospheric Pollution

• "Smog chamber" : the most direct way to study the relation between emission and air quality Finlayson-Pitts and Pitts, 1986

1. Context


- 2. The PolluRisk platform
- **3. The CESAM chamber**
- 4. Illustration : the Beijing case
- 5. A few results

6. the H2020 REMEDIA project


Strategy associated to PolluRisk

<u>Objectives:</u> to generate a representative model atmosphere of a large metropolis and maintain it for several days to expose mice (for several days)

Use CESAM as a reactor to generate the model atmosphere and feed a two-stage compartmentalized mouse cabinet (exposed mice and control mice)

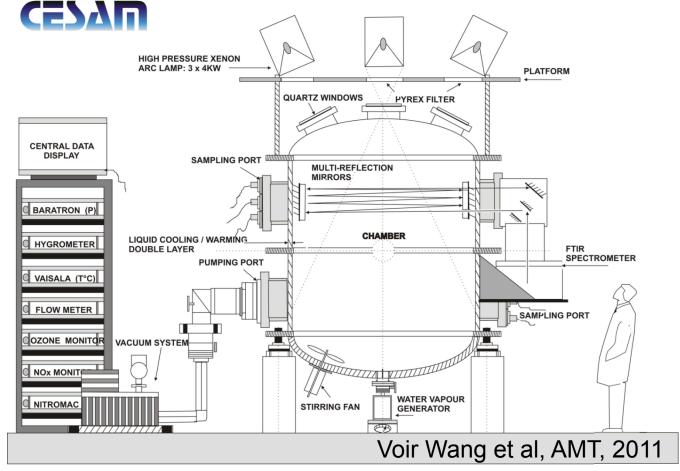
View of the platform

the PolluRisk platform

- Innovative transdisciplinary project (LISA and IMRB)
- <u>Objective</u>: to study the different impacts of AQ on living organisms

Illustration with PolluRisk#1 :

Vented cabinet

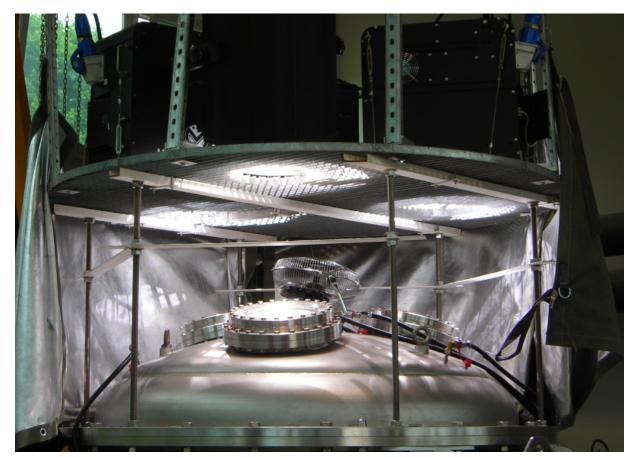

1. Context

- 2. The PolluRisk platform
- **3. The CESAM chamber**
- 4. Illustration : the Beijing case
- 5. A few results

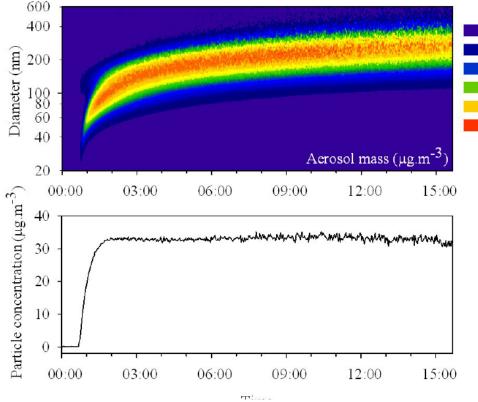
6. the H2020 REMEDIA project

the CESAM chamber

- $V = 4.2 \text{ m}^3$
- S/V = 4.29 m⁻¹
- Inox 304L
- Evacuable
- Artificial irradiation
- Controled in temperature (10°C to 60°C)

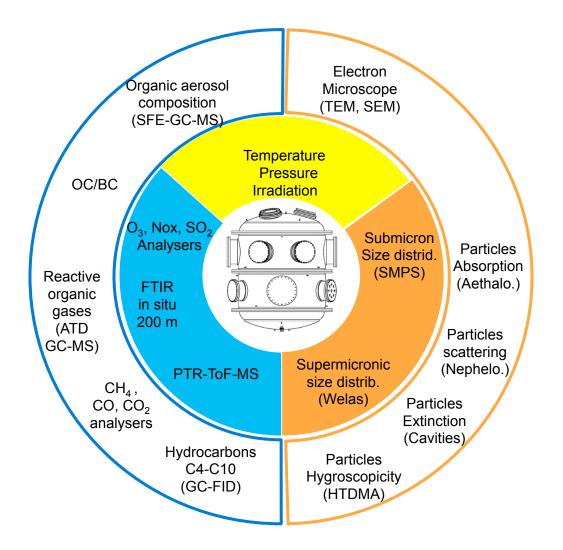


Solar Simulator


- 3 Xenon arc lamps of 4kW...
- arranged above the chamber...
- illuminate through portholes of synthetic quartz

Life time of the aerosol

Up to 4 days for a 200 nm aerosol


40

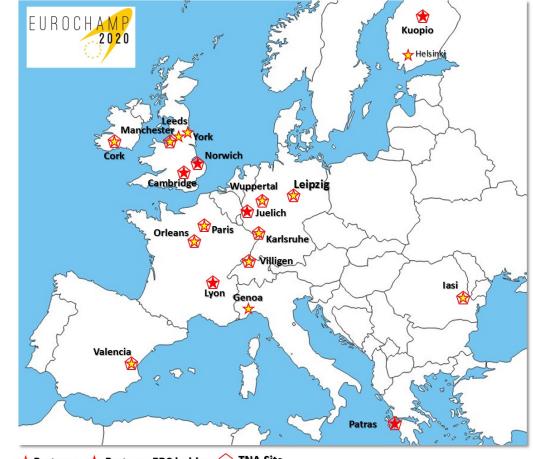
60 80

100

NB : Lifetime of an atmospheric particle from 1 to 3 days according to Williams et al. (2002)

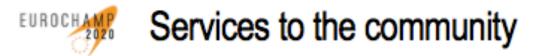
Analytical environment

A wide set of instruments to address a wide set of problematics !


The Eurochamp-2020 initiative

Since the 1st of december 2016 and for 4 years...

14 partners comprising 19 groups :


- 1A CNRS-Paris 9 – Kuoppio 1B – CNRS-Orleans 10 – Patras 1C – CNRS-Lyon 11 – Genoa 2 – Wuppertal 12 – Iasi 3 – Karlsruhe 13A – NCAS - Leeds 13B – NCAS - Manchester 4 – Julich 5 – Villigen 13C – NCAS - Cambridge 6 – Valencia 13D – NCAS - Norwich 7 – Leipzig 14 – Uni, Helsinki 8 – Cork
- The French under the banner of CNRS
- The British under the banner of NCAS

Open call for Associated Partnership

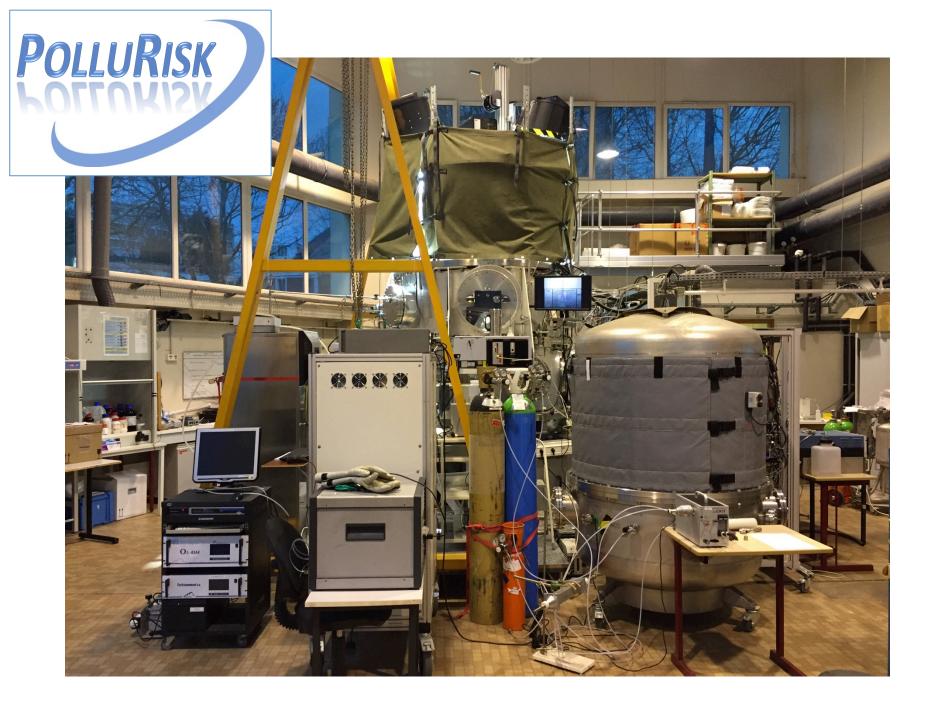
🛧 Partners 🔺 Partners ERC holder \, 🖒 TNA Site

Airmodus Ay, Biral, PlumeLabs, Nanothinx **Faillers & Faillers & Fa**

10.2 - air quality on health and on cultural heritage

(M. Kalberer)

- Biological effect of air pollution and bio-aero-contamination
- impact of air quality on cultural heritage,



9

1. Context

- 2. The PolluRisk platform
- **3. The CESAM chamber**
- 4. Illustration : the Beijing case
- 5. A few results

6. the H2020 REMEDIA project

Volatile organic compounds in 43 Chinese cities, Barbara Barletta (2001)

Average mixing ratio expressed in part per billion by volume (ppbv) of ethane (C2h6), ethyne, 1-3 butadiène, benzene and toluene. The one sigma standard deviation (SD) is also reported

				-				
🔤 🔽 C2	2H6 💌	SD	•	C2H2	•	SD2	•	1,3-butadie
	16,4		3	3	4,7		3,6	1,4
CE	5H6	SD4		C7H8		SD5		
0,08	5,9	1	,4		7,5		2,7	
e <mark>ric vol</mark> a	tile organic co	ompounds in C	hiı	na, H.Guo (2	017)		
sit 🔽 Si	te category 💌	Sampling per	•	Mixing ratio	•	Number of VO	. 🕶	Articles 🛛 💌
U	rban	March, July a	an	132.6 ±52.2	ug/		108	Liu et al. (200
U	rban	August 2005		43.4 ppbv			31	Song et al. (20
U	rban	August 2006		40.5 ppbv			57	Duan et al. (20
U	rban	August 2004-2	20	33.2 ± 23.4	ppb	1	20	Shao et al. (20
U	rban	May 2014		29.4 ppv			56	Li et al. (2015)
	C(0,08 eric vola sit v Si Ui Ui Ui	16,4 C6H6 0,08 5,9 eric volatile organic co sit ▼ Site categor ▼ Urban Urban Urban Urban Urban	16,4 C6H6 SD4 0,08 5,9 1 eric volatile organic compounds in C Site categori Sampling pe Urban March, Julyi Urban August 2005 Urban August 2006 Urban August 2004-	16,4 3 C6H6 SD4 0,08 5,9 1,4 eric volatile organic compounds in Chinsitit Site categor Sampling pe Urban March, July and Urban August 2005 Urban August 2006	16,4 3 3 C6H6 SD4 C7H8 0,08 5,9 1,4 eric volatile organic compounds in China, H.Guo (2 sit Site categor Sampling pe Urban March, July ani 132.6 ±52.2 Urban August 2005 43.4 ppbv Urban August 2006 40.5 ppbv Urban August 2004-20 33.2 ± 23.4	16,4 3 34,7 C6H6 SD4 C7H8 0,08 5,9 1,4 7,5 cric volatile organic compounds in China, H.Guo (2017) sit Site categor Sampling pe Mixing ratio Urban March, July ani 132.6 ±52.2 ug, Urban August 2005 43.4 ppbv Urban August 2006 40.5 ppbv Urban August 2004-20 33.2 ± 23.4 ppbv	16,4 3 34,7 C6H6 SD4 C7H8 SD5 0,08 5,9 1,4 7,5 cric volatile organic compounds in China, H.Guo (2017) Site categor Sampling pe Mixing ratio Number of VOC Urban March, July an: 132.6 ±52.2 ug/ 12/2 12/2 12/2 12/2 Urban August 2005 43.4 ppbv 12/2 12/2 12/2 12/2 Urban August 2006 40.5 ppbv 12/2 12/2 12/2 12/2 Urban August 2004-20 33.2 ± 23.4 ppb 12/2 12/2 12/2 12/2	16,4 3 34,7 3,6 C6H6 SD4 C7H8 SD5 0,08 5,9 1,4 7,5 2,7 eric volatile organic compounds in China, H.Guo (2017) Site categor Sampling pe Mixing ratio Number of VOC. Urban March, July an: 132.6 ±52.2 ug/ 108 Urban August 2005 43.4 ppbv 31 Urban August 2006 40.5 ppbv 57 Urban August 2004-20 33.2 ± 23.4 ppb 20

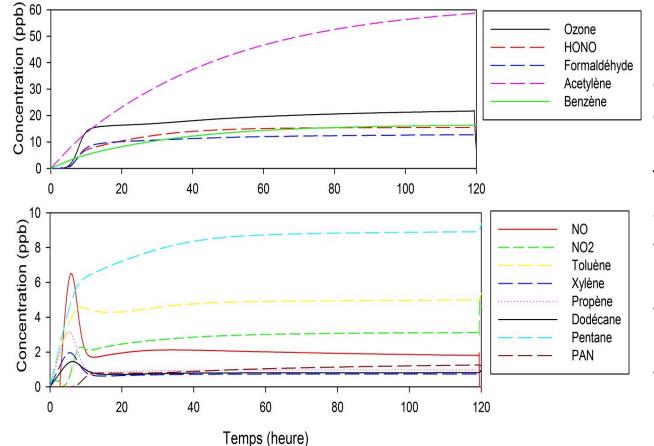
Atmospheric BTEX and carbonyls during summer seasons of 2008 2010 in Beijing, Yujie Zhang (2011)

	Concentrations moyennes en été en ug/m3								
Colonne1	2008	•	2009	▼	2010	-			
benzene	3.3 ± 2.0		3.2 ± 3.3		2.1 ± 1.5				
toluene	5.6 ± 4.0		8.6 ± 5.5		5.9 ± 3.7				
ethylbenzene	2.1 ± 4.0		3.3 ± 2.1		2.3 ± 1.4				
m-p xylene	3.3 ± 2.2		4.6 ± 3.4		3.4 ± 2.4				
o xylene	1.7 ± 1.3		1.9 ± 1.3		1.7 ± 1.2	1.1			
Total	16.0 ± 9.3		21.5 ± 13.7		15.4 ± 9.3				

Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, Yujie Zhang (2012)

Colonne1 🛛 🔽 FADH	💌 Ace	taldehyd 🔽 Ace	tone 🛛 💌 Benzene	💌 Tol	uene 🛛 💌 Ethy	lbenzen 💌 m, p >	(ylene 💌 o xylèn	e 💌
Automne 2008	5,9	6,6	13,1	4,6	8,5	3,4	5,7	2,8
Hiver 2008	4,8	6	11,6	6,9	10,4	2,5	4,9	2,2
Printemps 2009	5,3	6,8	4	4,8	9,4	2,7	4,3	1,8
Eté 2009	8,8		1	3,2	8,6	3,3	4,6	1,9
Automne 2009	8,3		2,1	5,1	11,2	4,1	7,2	2,8
Hiver 2009	4,3	- T,3	16	9,2	14,5	4,4	7,5	3,5
Printemps 2010	6,6		28,9		9,2	3,2	5,3	2,6
Eté 2010	3,7	9,	28,7		5,9	2,3	3,4	1,7
Moyenne (ug/m	5,9625	,575	18,8875	4-05	9,7125	3,2375	5,3625	2,4125
Thèse de Cecile GAIMO	DZ							

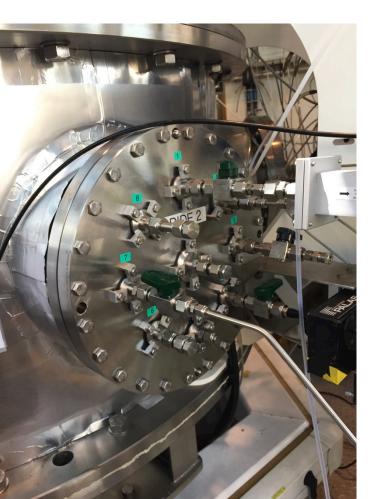
Thèse de Cecile GAIMOZ


Teneurs moyennes des 10 COV les + abondants pour e Péki Atmospheric volatil organic compounds in a typical up in jing..., Hao Zhang (2017) h of J Mesures réalisées entre avril 2014 et Juin 2015

	es entre avril 20							
HaoZhang 🛛 💌	Annual conc 💌	Cecile GAIM 🔽 Co	atic 🔽 🤇	Concentrations 💌	Masse mol	Concentratic 🔽	Réactivité	💌 DEBIT MOL (🔽
ALCANES								
ethane	5,40	ethane	3,65	4,53	30,07	9,06E+10		3,62E+05
propane	8,42	propane	6,22	7,32	44,1	1,00E+11		4,00E+05
i-butane	3,10	i-butane	7,84	5,47	58,12	5,67E+10		2,27E+05
n-butane	4,66	n-butane	8,78	6,72	58,12	6,96E+10		2,78E+05
i-pentane	0,19	i-pentane	14,65	7,42	72,15	6,19E+10		2,48E+05
cyclopentane	2,99			2,99	72,15	2,50E+10		9,98E+04
n-hexane	1,61			1,61	86,18	1,13E+10		4,50E+04
n-pentane	1,45	n-pentane	5,43	3,44	72,15	2,87E+10		1,15E+05
n-dodecane	5,29			5,29	170,34	1,87E+10		7,48E+04
ALCENES								
ethylene	6,15			6,15				
propene	3,18			3,18	42,08	4,55E+10		1,82E+05
isoprene	2,01			2,01				
ALCINES								
acetylene	3,84	acetylène	4,32	4,08	26,04	9,44E+10		3,77E+05
HYDRACARBUR	ES AROMATIQU	ES						
benzene	4,09	benzène	5,87	4,98	78,11	3,84E+10		1,54E+05
toluene	6,10	toluène	8,86	7,48	92,14	4,89E+10		1,95E+05
ethylbenzene	2,69			2,69				
m,p-xylene	5,57	m,p-xylène	4,69	5,13	106,16	2,91E+10		1,16E+05
o-xylene	1,24			1,24				

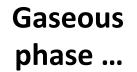
Air quality of Beijing and impacts of the new ambiant quality standard, Wei Chen (2015) Etude réalisée de 2000 à 2013

8 stations en zone urbaine de Pékir	PM 10 (ug/m3 🔽 PN	/l 2.5 (ug/m3) 💌 Ozon	e (ug/m3 🔽 SO	2 (ug/m3) 💌 NC	2 (ug/m3) 🔽 CO (mg/m3)
Whanshouxigong	135,88	91,09	55,98	27,24	56,99	1,6
Dongsi	137,83	125,7	54,24	50	74,92	2,4
Tiantan	114,17	89,78	59,76	21,78	54,54	1,5
Nongzhanguan	114,75	90,4	£2,12	28,1	60,82	1,
Guanyuan	116,43	89	83	27,14	59,69	1,4
Wanliu	125,48	8,	51,81	36,28	72,17	1,4
Gucheng	119,47	4	62,08	21,82	61,87	1,54
Aoti	93		48,84	21,15	60,61	1,10
MOYENNE	22,	18675	57,0825	29,18875	62,70125	1,58
Atmospheric volatil organic compour Mesures réalisées entre avril 2014		re Benjing, Hao Zha	ang (2017)			
Colonne1		lec/cm3 🔤	-			
NO	J.Z 1 4	6,06013E+11				
NO2	2 .4	1,16788E+12	5			
NH3	28.9	2,06687E+11				
SO2	23.2 ± 49.8	4,65547E				
CO	1.92 ± 1.72	385 ,000				
03	44.3 ± 53.2	695 H1				
PM 2.5	117 ± 108	e#12				
		500				



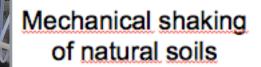
Model output obtained by FACSIMILE for long-term exposure (5 days)

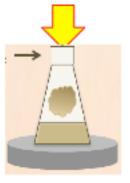
Prediction of concentrations in the chamber


The model takes into account:

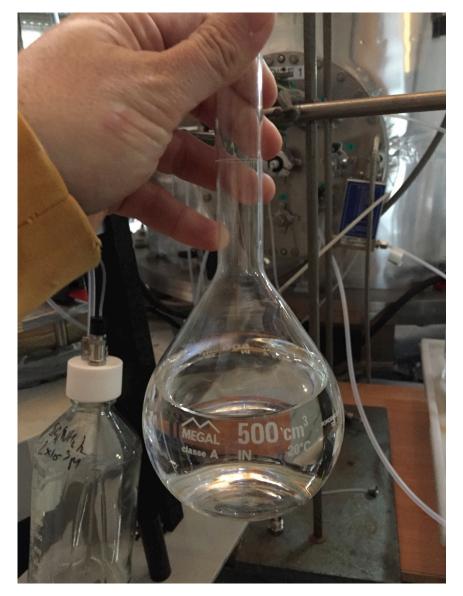
- 1500 species and 3000 reactions
- injection of 7
 organic precursors
- Introduction of NO
- <within 20h, concentrations are stable

 N_2 from N_2 liq sublimation





Soot

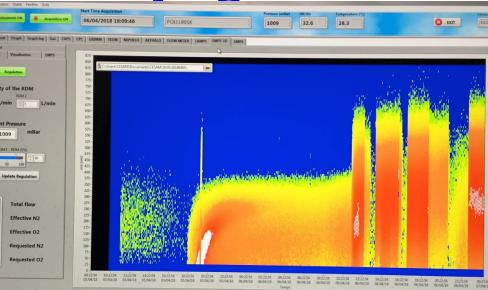


Mineral dust aerosols

Dust particles

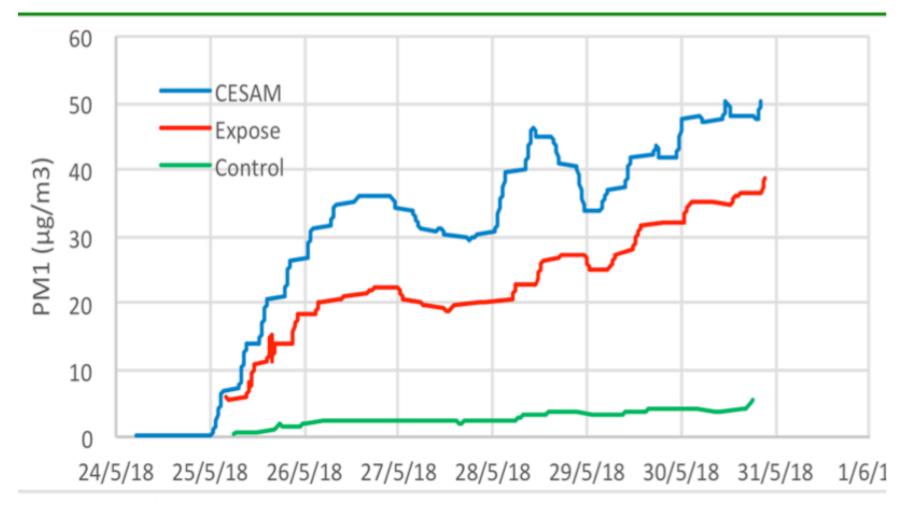
inorganic aerosols

Metrology



17.096

13.676

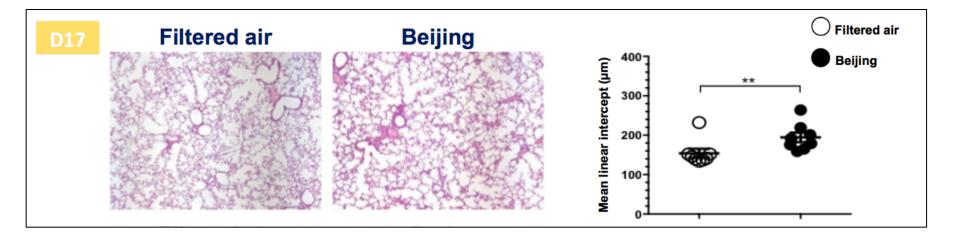

Metrology

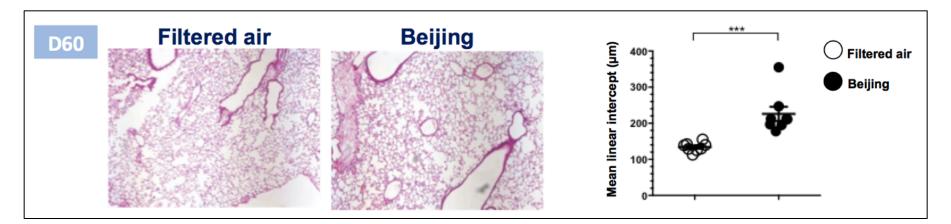
budget(s) illustration

Typical Beijing simulated atmosphere (particle total concentrations)

PolluRisk : task force

- 8 days of mice exposure
- Samples from:
 - lungs
 - Heart
 - Fat tissue
 - Spleen
 - Mesenteric lymph nodes
 - Muscle (anterior tibialis)

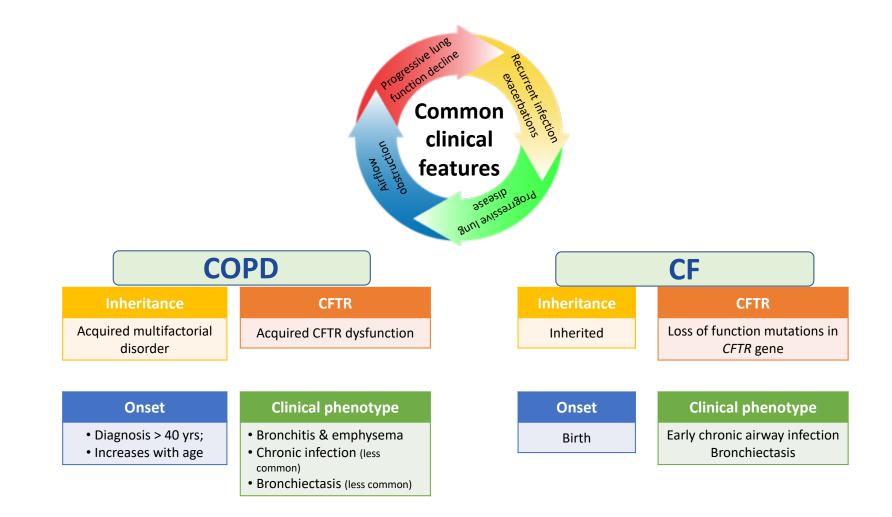



1. Context

- 2. The PolluRisk platform
- **3. The CESAM chamber**
- 4. Illustration : the Beijing case
- 5. A few results

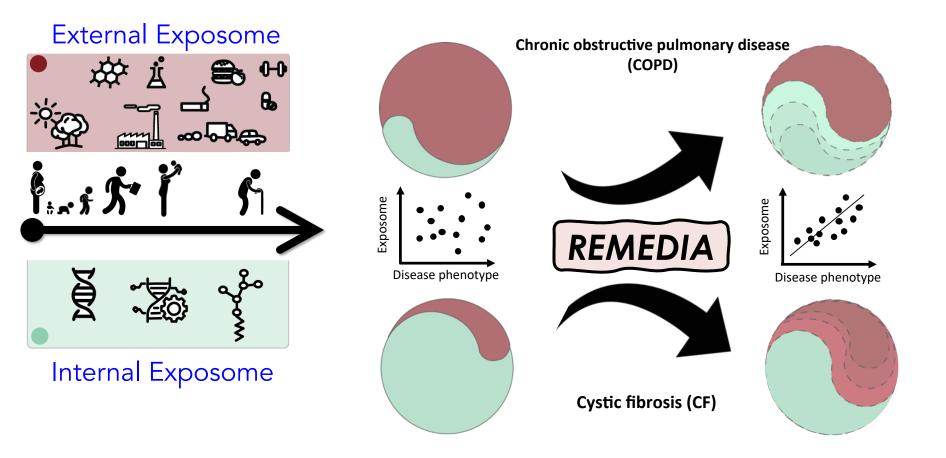
6. the H2020 REMEDIA project

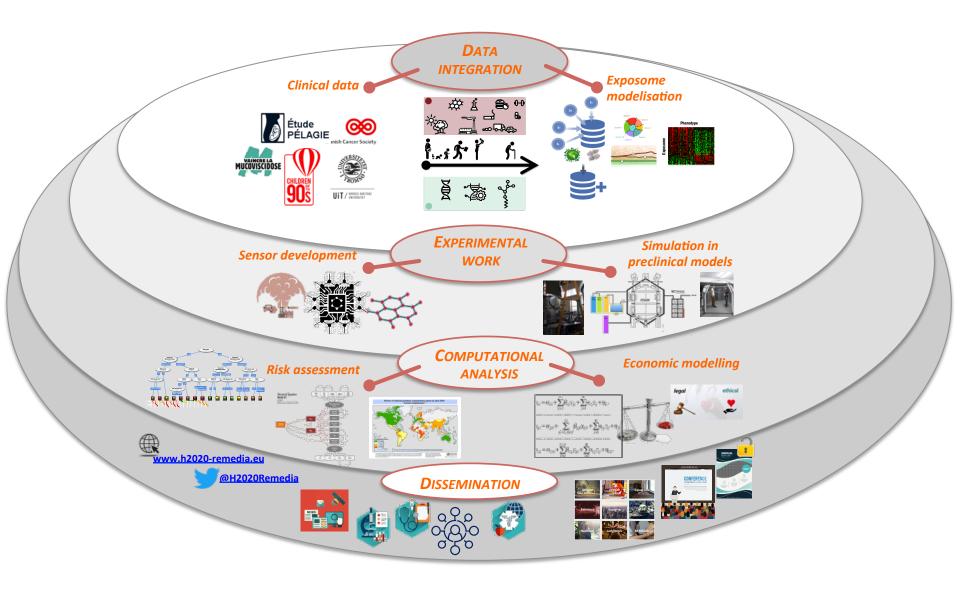
PolluRisk#1 illustrative results



Beijing : Hypoalveolarization, which remains persistant at adulthood.

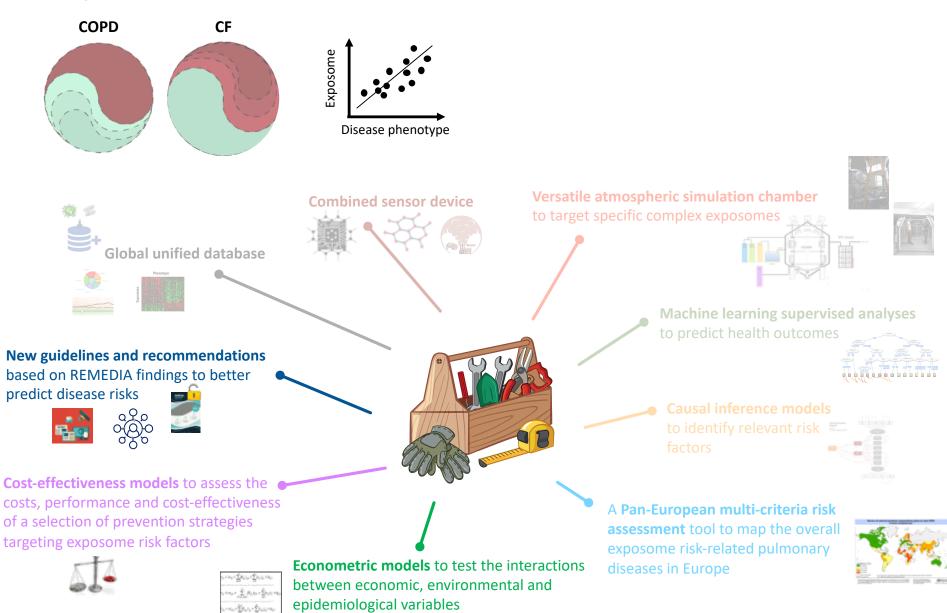
1. Context


- 2. The PolluRisk platform
- **3. The CESAM chamber**
- 4. Illustration : the Beijing case
- 5. A few results
- 6. the H2020 REMEDIA project


Following "Genetics load the gun but environment pulls the trigger"...

➔ Two very different diseases

Impact of exposome on the course of pulmonary pathologies


REMEDIA

IMPACT OF EXPOSOME ON THE COURSE OF LUNG DISEASES

WP4 – Simulation of exposome in preclinical models

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874753

Impacts

THANKS FOR YOUR ATTENTION !

POLLURISK: AN INNOVATIVE EXPERIMENTAL PLATFORM TO INVESTIGATE HEALTH IMPACTS OF AIR QUALITY

PATRICE COLL¹, MATHIEU CAZAUNAU¹, JORGE BOCZKOWSKI², MAËVA ZYSMAN², JEAN-FRANÇOIS DOUSSIN¹, ALINE GRATIEN¹, GENEVIÈVE DERUMEAUX², MARIA PINI², CLAUDIA DI BIAGIO¹, ÉDOUARD PANGU¹, CÉCILE GAIMOZ¹, SOPHIE HÜE², FRÉDÉRIC RELAIX², AUDREY DER VATANIAN², ISABELLE COLL¹, VINCENT MICHOUD¹, PAOLA FORMENTI¹, GILLES FORÊT¹, LAURENCE THAVARATNASINGAM¹, ADELA AMAR¹, MICKAËL LACAVALERIE², MARGAUX MÄDER¹ & SOPHIE LANONE² ¹LISA UMR CNRS 7583, Universities Paris Est Créteil and Paris Diderot, France ²IMRB – Inserm U955, Faculté de Médecine de Créteil, France

WIT Transactions on Ecology and the Environment, Vol 230, © 2018 WIT Press www.witpress.com, ISSN 1743-3541 (on-line) doi:10.2495/AIR180521