Do different geologists see the same fractures? Quantifying subjective bias in fracture data collection. <u>B. J. Andrews¹</u>, J.J Roberts¹, Z.K. Shipton¹, S. Bigi², M.C. Tartarello², G. Johnson^{1,3}

1) University of Strathclyde 2) Sapienza University of Rome 3) University of Edinburgh

E-mail: Billy.Andrews@strath.ac.uk

EGU 2020: Sharing Geoscience Online, 4–8 May 2020

Workflow for fracture modelling

Ē

BY

(CC

Do we all see the same fracture network?

 (\mathbf{i})

(cc)

(\mathbf{i}) (CC) Why do we see different fractures? **C5** Scanline number i-node Participants are C1 Number of fractures C2 C3 C4 C7 C5 C6 20 internally consistent 60 Large variability in y-node classification recorded 15 Small fractures are count **C8** i-node most variable! 40 10

node

5

0.0

0.2

0.6

0.8

1.0

1.2

y-node

Two y-

nodes or 1

y-node

20

Is a circular scanline representative (Ni + Ny > 30)? \bigcirc

Subjective bias greatly effects fracture observation!

Slide 4

RQ2: How does subjective bias impact output statistics?

Statistic	Circular scanline - topology	Circular scanline - window	Linear scanline
Intensity	Very low to low variability when derived from field data and low to moderate when workshop data are used. For Circles 1, 4, and 5 the calculated intensity from work- shop and field data were very sim- ilar; however, the calculated inten- sity for Circle 3 was much lower in the workshop. In all cases ranges are greater when workshop data are used, particularly for Circles 1 and 5.	Low spread between participants within circles. In all cases, apart from Circle 4, intensity calculated using window sampling is lower than that derived for node counting for a given circle.	Variability, which ranged from very low to high, depends on the scanline being sampled. For example, Lines 3–5 are all low intensity and have a small range.
Density and spac- ing	Low to high spread when derived from field data and moderate to very high when workshop data are used. Density calculated from workshop in all cases apart from Circle 1 is lower than when calcu- lated from field data.	Moderate to high spread. Values consistently higher in workshop data when window sampling data are used compared to node count- ing, particularly Circle 8. Can be comparable to field density (Cir- cle 4) or considerably higher (Cir- cle 1).	Variability in mean spacing values depends on the scanline being sam- pled, ranging from very low to very high. Maximum reported spacing had low spread, whereas minimum spacing ranged from low to extreme variability depending on the scan- line being sampled. Equally large range in workshops and field.
Mean trace length	Low to moderate spread when de- rived from field data and moder- ate to high when workshop data are used. How similar the range in re- ported values is between workshop and field data varies for different circles.	Moderate spread across all circles. The extremes in the ranges ob- served in mean trace length esti- mates are considerably lower than for node counting. Of all meth- ods window sampling provides the smallest estimate for mean trace length.	Moderate to highly variable for most scanlines. Equally large range in workshops and field. Maximum reported trace lengths generally much larger than for other methods due to the different scale of obser- vation.
Connectivity	Very low spread between circles, methods, and settings (field vs. workshop).	Not assessed separately from node classifications.	Spread depends on the scanline be- ing sampled and ranges from very low to extremely variable. Equally large range in workshops and field.

- Output statistics are variably effected by subjective bias depending on the statistic and the method used to collect the fracture data.
- Less variability is observed in fracture data collected from the field.
- Trace length and fracture density are greatly effected by subjective bias, intensity is less so.
 - Window sampling appears to be least impacted by subjective bias.

Recommendations for reducing subjective bias

4. Consider the cogitative biases of team members in collaborative work and amend fracture networks where applicable to reduce biases in output statistics.

Have a go.. How many fractures do you see?

How many fracture traces, n-, i-, y- and xnodes would you interpret in the circle?

> Lets discuss!

Drone data courtesy of Dave Healy from the University of Aberdeen, Scotland