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Summary

A. Discovery of localised electron structures in the Earth’s magnetosphere raises
several questions, e.g.,
—How are they generated and how do they dissipate?
—Are they efficient in scattering/energising electrons in the Earth’s
magnetosphere?

B. Since wave-particle interactions of nonlinear phase holes can NOT be treated with
quasi-linear theory we derive diffusion coefficients from a Hamiltonian
— We start from Hamilton’s equation to compute changes in the first adiabatic
invariant.
— We incorporate a finite correlation time for the nonlinear electrostatic structures.
The ratio of the linear transit time compared to the correlation time determines the
strength of the wave-particle interaction.

C. The effect of finite correlation time results in enhanced diffusion of electrons with
large pitch-angles (i.e. longer transit times).
—We recover the diffusion coefficients derived by Vasko et al. (2017) in the limit
where the transit time is much smaller than the correlation time.
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PARALLEL E-FIELD, mV/m

Motivation: Discovery of localised nonlinear

phase space structures in the radiation belts
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Electron’s scattering by nonlinear structures



Theoretical analysis
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Hamiltonian for the interaction of a particle with

an electrostatic phase space hole
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After use of the modified Bessel function identity e”<5(?) =37 [ (r)e~ " we write

the Hamiltonian as:

2

P ~
H=puQ+ —= +qVyexp
2m

_1 Z—'U¢t ? +Z°° A e—me_q (2)
2 d|| " ’

nN=—oo

in which the function A,, is defined as:
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and depends on the Larmor radius p and the gyro-center . The equation of motion of
i can then be written as:
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Derivation of the diffusion coefficient: Part 1

In order to derive a diffusion coefficient we use the recipe that was outlined by Taylor
(1922) almost 100 years ago for the passive transport of particle in fluid turbulence. We
first compute the dispersion in the first adiabatic invariant as follow:

Aplji =2 /0 dt /O dtafi(ty)fi(t2). (6)

Since we are interested with the statistical effects of phase space holes on electrons we
average over an ensemble of particles uniformly distributed along the gyrophase. With
the unperturbed orbit approximation, i.e. z = vt and 6, = Qt + g, valid as long as

Ty, > 71, the correlation of two perturbations in the first adiabatic invariant can be writ-
ten as:
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If we now integrate over the initial phase ¢y we find the ensemble average product:
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Derivation of the diffusion coefficient: Part 2

We also assume, through stationarity, that the covariance of the fluctuations can
be written in the form:

(Vo(t1)Vo(t2))y = (V) exp(—|t1 — ta|/7c), (9)

in which 7, represents the decorrelation of the electron hole fluctuations and (V?) the
variance. Thus, the integral we want to solve can be written as:

+00
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After some algebra we find:

The above expression follows the integration over the gyrocentre r, and is written in terms
of the function A,,, defined as

2 o0
A, = 2exp (—s—i) /0 xe“‘”zlg (%) dx, (15)
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Comparison with Vasko et al. (2017) results

Limit for 7, /7. — 0 and finite Q7

The dispersion derived by (Vasko et al., 2017) for energetic electrons interacting with
electron holes can nonetheless be recovered by setting 7, /7. — 0, i.e.,

lim (ApAp)y = drq® (V317 Z n’A; exp (—n*Q°77) (17)
n=1

L0

In this limit the transit time is much smaller than the decorrelation time and the elec-
tron samples a phase space hole so fast that it sees no net changes of the electric field
amplitude. For such an instance, and as pointed out by Vasko et al. (2017), perpendic-
ular energisation only occurs for cyclotron resonant particles (n27;, ~ 1) since Landau
resonant particles with n = 0 only gain energy along the local mean field direction. How-
ever, when we account for a small, yet finite transit time with respect to the decorrela-
tion time, an additional energy exchange mechanism for non-resonant particles appears.
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Comparison with Vasko et al. (2017) results

Comparison of diffusion coefficients between 7. > 1 and Q7. ~ 1

In this section we quantify the effect of finite correlation time 7. on the diffusion of par-
ticles that can be well-approximated by unperturbed orbits. For this reason, we only present
figures for electrons with energies in the 10 — 100 keV range and pitch-angle o < 70°

for which 7, < 7,. We now define the ratio of diffusion coefficients for comparison be-

tween Equations (14) and (18) as:

(ApAR) g o,
limze o (ApAR)y 4,
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D o1 MPAL exp (—n?Q%77) |

(18)

A ratio of R > 1 indicates that the effect of the finite correlation times enhances dif-
fusion, whereas a ratio of R < 1 suppresses it. In Figure 2 we show the dependence of

the parameter R as a function of the energy W and parametrised for pitch-angles o =
(10°, 307,507, 70°] and normalised decorrelation times 7. = [0.75,1,2,10]. We note that
the effect of finite correlation becomes important when 7. ~ 1. For 7. > 1, the con-
vergence to unity indicate that the diffusion is to a few percents identical to that of Vasko
et al. (2017). For pitch-angles o < 40", the finite correlation time suppresses diffusion

by a factor of as large as 30%. On the other hand, for pitch-angles o« > 50°, Q7. ~ 1
enhances diffusion by a comparable factor of 30%. In Figure 3, we plot the same ratio
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Results
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Orbits that can be described as unperturbed

require transit time less than trapping time.
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Figure 1. Normalised transit time Q7 =

as a function of the pitch-angle a for, start-

for an electron interacting with a phase space hole of electric field amplitude £ ~ 30 mV/m
and scale d =~ 0.7 km is of the order of Q27, =~ 9. The yellow (orange) shaded regions repre-
sents the parameter space for which transit times are smaller (larger) than bounce time. In this

study we focus solely on electrons that have transit times much smaller than the bounce time, i.e.
Q71 < 1. This constraint is made to insure that the unperturbed orbit approximation remains

valid.
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Ratio of diffusion coefficient: Part 1

» 0.951 — @

g - £ 0.95

2 2

= 0.90 =

L (]

8 8 0.90

£ 035 g"

S 0.80+ = 0.85-

(=] =]

= 2

3 0.751 5

= % 0.80-

0.70
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Electron energy (keV) Electron energy (keV)

. , 1.25-
£ 2

5 5

(&) Q

= = 1.201

[ (5]

o Qo

Q (&)

8 8 1.15]

z z

£ £

= = 1.10-’\

(o) [}

o o

& 2 1.05- —

.-
'—._.

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Electron energy (keV) Electron energy (keV)

Figure 2. Ratio of diffusion coefficients with and without finite correlation time effects. The
top left (right) panel shows the energy dependence of the coefficient R for electrons with 10 (30)
degrees pitch-angle. The bottom left (right) panel shows the same coefficient but for electrons
with 50 (70) degree pitch-angle. The solid, dotted, dash, and dashed-dotted curves in each panel
are for normalised correlation times Q.7. = [0.75,1,2,10]. Note that the scale of the y-axis in

each panels differ.
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Ratio of diffusion coefficient: Part 2
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Figure 3. Ratio of diffusion coefficients with and without finite correlation time effects. The
top panels show the pitch-angle dependence of the coefficient R for electrons with W = 10
keV. The bottom panels show the same coefficient but for electrons with W = 100 keV. The
solid, dotted, dash, and dashed-dotted curves in each panel are for normalised correlation times
Qere = [0.75,1,2,10]. We only compute the ratio for particles with transit-times smaller than the

bounce time, i.e. 71, < 7, with the cut-off between o = 70° and o = 110° a results of which.
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Conclusion/Take away

A. Using a Hamiltonian formalism we derived a diffusion coefficient while taking
into account the finite correlation time of the electric fields of nonlinear phase
space structures——> electrons can sample decorrelating/growing fields.

B. This effect results in enhanced diffusion for e- that have longer transit time
(i.e. large pitch-angles) and reduced diffusion for e- that have short transit
time (small pitch-angles).

C. The diffusion of 10-100 keV electrons caused by phase-holes is comparable in
size to that by whistlers. Our results indicate that the associated diffusion
coefficients need to be incorporated into global models.
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