

Paleoceanography and Paleoclimatology

RESEARCH ARTICLE

10.1029/2019PA003820

Key Points:

- ²³⁰Th normalization is a robust tool for calculating sedimentary mass fluxes
- ²³⁰Th may be affected by hydrothermal and boundary scavenging in certain discrete regions
- Generally, ²³⁰Th mass fluxes are preferable over age model-based mass accumulation rates

Supporting Information:

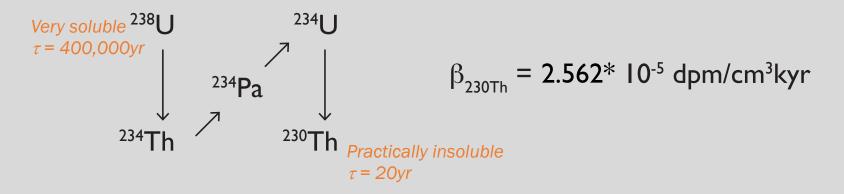
- Supporting Information S1
- Table S1

Correspondence to:

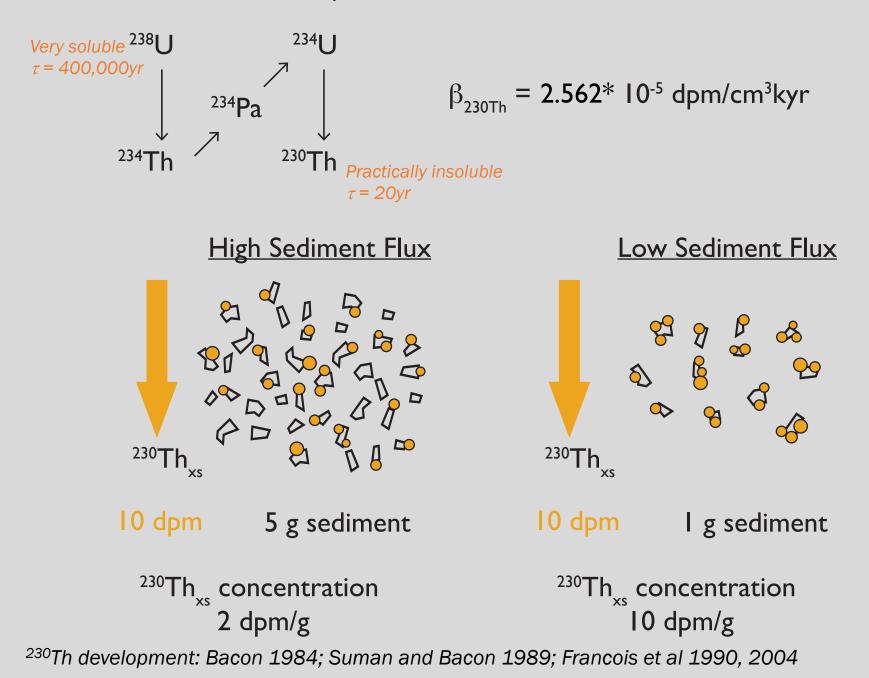
K. M. Costa, kassandracosta@whoi.edu

Citation:

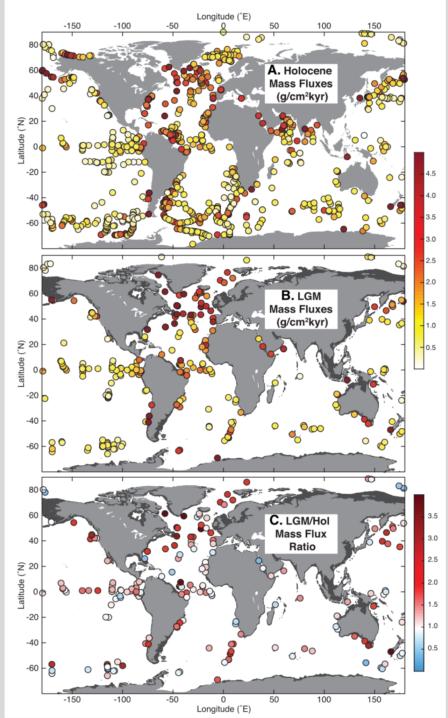
Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., et al. (2020). ²³⁰Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the bcean.


²³⁰Th Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean

Kassandra M. Costa¹ (D), Christopher T. Hayes² (D), Robert F. Anderson^{3,4} (D), Frank J. Pavia^{3,4,5} (D), Alexandra Bausch^{3,4,6} (D), Feifei Deng⁷ (D), Jean-Claude Dutay⁸ (D), Walter Geibert⁹ (D), Christoph Heinze¹⁰ (D), Gideon Henderson⁷ (D), Claude Hillaire-Marcel¹¹ (D), Sharon Hoffmann¹² (D), Samuel L. Jaccard¹³ (D), Allison W. Jacobel^{14,15} (D), Stephanie S. Kienast¹⁶ (D), Lauren Kipp^{3,16} (D), Paul Lerner¹⁷ (D), Jörg Lippold¹⁸ (D), David Lund¹⁹ (D), Franco Marcantonio²⁰ (D), David McGee²¹ (D), Jerry F. McManus^{3,4} (D), Figen Mekik²² (D), Jennifer L. Middleton³ (D), Lise Missiaen²³ (D), Christelle Not²⁴ (D), Sylvain Pichat^{25,26} (D), Laura F. Robinson²⁷ (D), George H. Rowland²⁷ (D), Matthieu Roy-Barman⁸ (D), Alessandro Tagliabue²⁸ (D), Adi Torfstein^{29,30} (D), Gisela Winckler^{3,4}, and Yuxin Zhou^{3,4} (D)


¹Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, ²School of Ocean Science and Engineering, University of Southern Mississippi, Stennis Space Center, MS, USA, ³Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA, ⁴Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA, ⁵Now at Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA, USA, ⁶Now at Department of Earth System Science, Stanford University, Stanford, CA, USA, ⁷Department of Earth Sciences, University of Oxford, Oxford, UK, ⁸Université Paris-Saclay, CNRS, CEA, UVSQ, Laboratoire des sciences du climat et de l'environnement, IPSL, Laboratoire CEA, UVSQ, CNRS, Gif sur Yvette, France, ⁹Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, ¹⁰Geophysical Institute and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway, ¹¹GEOTOP, Université du Québec à Montréal, Quebec, Canada, ¹²Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, NC, USA, ¹³Institute of Geological Sciences and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland, ¹⁴Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA,

How does ²³⁰Th normalization work?

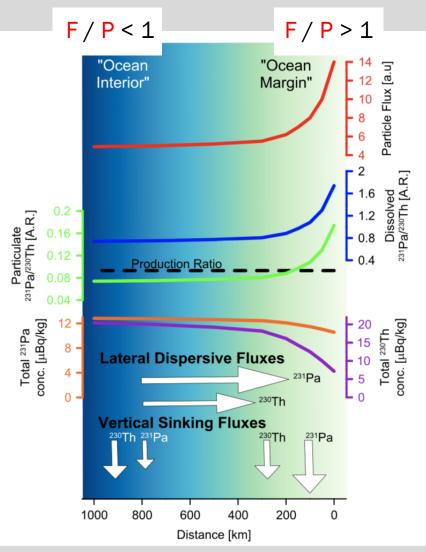

Constant production in the water column:

Constant production in the water column:

4

²³⁰Th Global Database

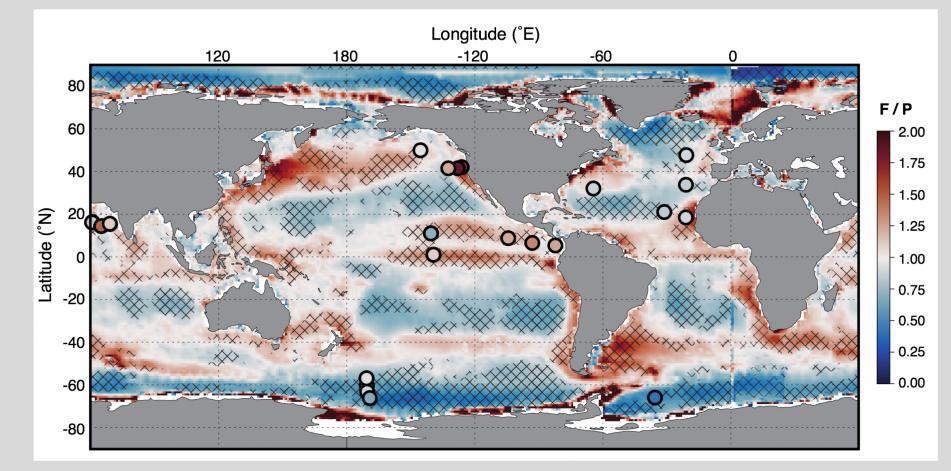
- Working group in the GeoTRACES program
- Compilation of over 1000 sites!
- Can be combined with measurements of, e.g., CaCO₃, Opal, Fe, etc
- Update, synthesis, and outlook for ²³⁰Th normalization


²³⁰Th assumption

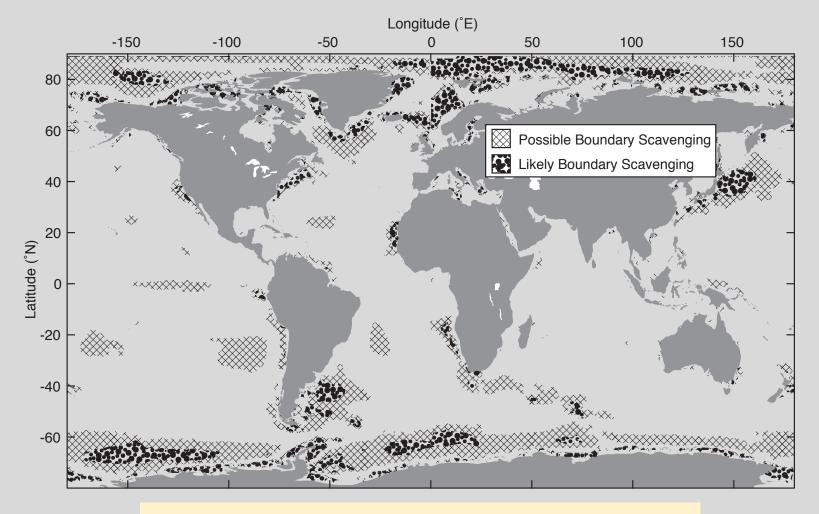
- All the ²³⁰Th produced in the water column is scavenged by particles and buried in the underlying sediment
 - Flux to Sediment = Production in Water Column

- 1. Boundary Scavenging
- 2. Nepheloid Layers
- 3. Hydrothermal Activity

Boundary Scavenging


- High particle fluxes near margins rapidly/efficiently strip ²³⁰Th out of the water column
- This can create a concentration gradient in ²³⁰Th in the water column
- ²³⁰Th could then follows the concentration gradient towards the boundary

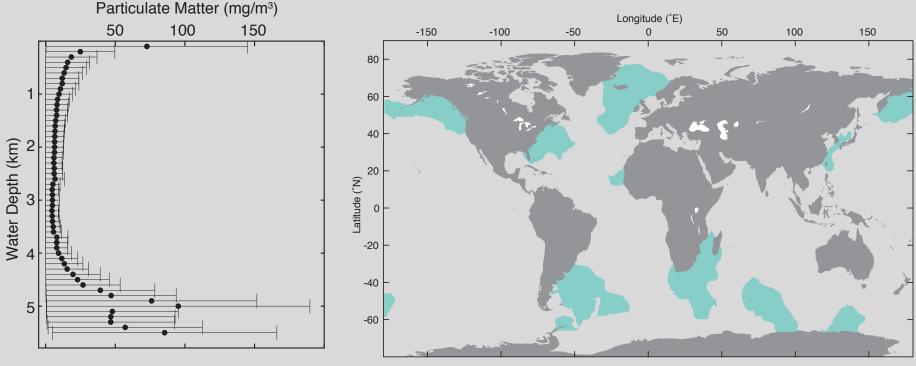
Hayes et al., 2015


Modelled F/P captures boundary scavenging

73% of the ocean has ²³⁰Th flux within 30% of water column production

Background : Composite of iLoveClim, HAMOCC, CESM, and NEMO-PISCES models Dots : measurements in sediment traps

Boundary scavenging really only an issue in the polar seas and along continental margins

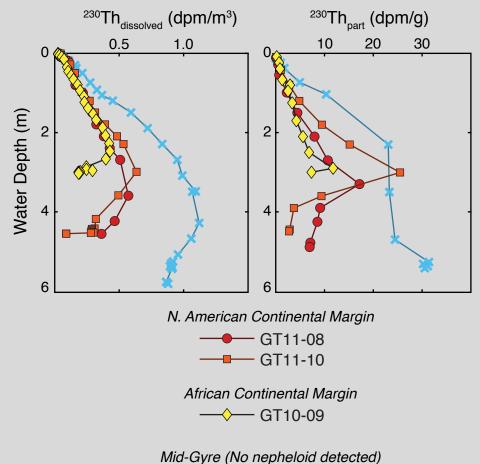


Most of the ocean is doing just fine!!

Other considerations for ²³⁰Th application

- Discussed next:
 - Nepheloid layers
 - Hydrothermal scavenging
- Also in the Paper:
 - Grain sizes and sediment focusing
 - Calcium carbonate dissolution

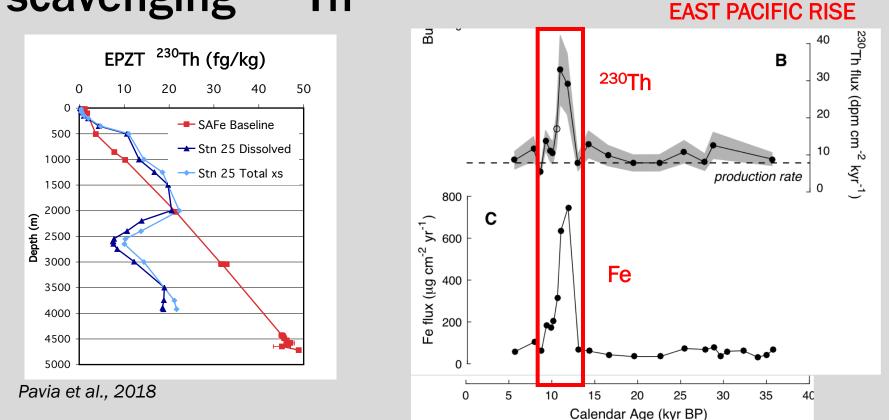
Nepheloid layers: "Boundary Scavenging" along the seafloor


Lerner et al., submitted

Gardner et al., 2018

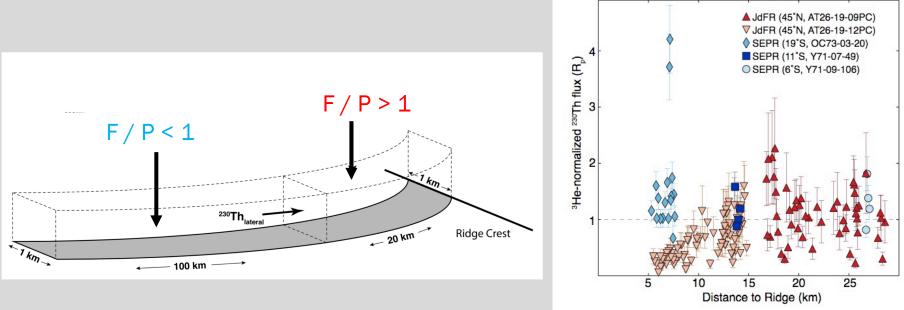
 Sediment that gets resuspended due to turbulence along the seafloor

Nepheloid layers do scavenge extra ²³⁰Th...


- But the particle concentration is so high...
- That the net ²³⁰Th concentration decreases !!
- Could possibly lead to overestimating the mass flux
- But need to test this with coretop samples under nepheloid layers

Hayes et al., 2015; Lerner et al., submitted

- GT11-20


Hydrothermal Activity: Fe-Mn rich particles have high affinity for scavenging ²³⁰Th

Lund et al., 2019

 Burial rates on mid-ocean ridges may be higher than production (F/P >1)

High ²³⁰Th fluxes have to be supplied from somewhere...

Lund et al., 2019

Lund et al., 2019; Middleton et al., in prep

- Excess scavenging at the ridge creates a concentration gradient
- Lateral diffusion supplies more ²³⁰Th
- Net effect of hydrothermal scavenging is difficult to predict

Summary

- Where it works: MOST of the ocean!!
- Where to use caution:
 - Continental margins and polar oceans, where boundary scavenging may be high
 - Fluxes biased too LOW
 - Regions with extensive nepheloid layers
 - Fluxes biased too HIGH
 - Mid-ocean ridges with active hydrothermal systems
 - Fluxes could be biased either HIGH or LOW
- Future directions:
 - Validate hypotheses with joint ³He-²³⁰Th measurements

Questions?

- Please contact me at
 - kassandracosta@whoi.edu

• I look forward to hearing from you!