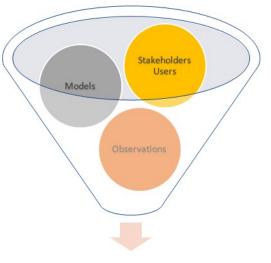


Evaluation of NMMB-MONARCH dust reanalysis within the DustClim ERA4CS project

Michail Mytilinaios¹, Lucia Mona¹, Francesca Barnaba², Sergio Ciamprone¹, Serena Trippetta¹, Nikolaos Papagiannopoulos¹, Sara Basart³, Enza Di Tomaso³, Oriol Jorba³, Carlos Pérez García-Pando³, Emmanouil Proestakis⁴, Eleni Marinou⁵, Vassilis Amiridis⁴, Paola Formenti⁶, Juan Cuesta⁶, Claudia Di Biagio⁶, Benoit Laurent⁶ and Beatrice Marticorena⁶

- ¹ Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Tito Scalo, Italy
- ² Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Rome, Italy
- ³ Earth Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- ⁴ Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Athens, 15236, Greece
- ⁵ Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft und Raumfahrt (DLR), Oberpfaffenhofen, Germany
- ⁶ LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France

Institute of Methodologies for Environmental Analysis


DUSTCLIM PROJECT - OVERVIEW

DUST Storms Assessment for the development of user-oriented **CLIM**ate services in Northern Africa, the Middle East and Europe

Sand and dust storms (SDS) are an important threat to life, health, environment and economy in many countries, and play a significant role in different aspects of weather, climate and atmospheric chemistry. There is an increasing need for SDS accurate information and predictions to support early warning systems and mitigation plans [1].

DustClim Objectives:

- Provide reliable information on SDS trends and current conditions
- Develop dust impact assessment pilot studies and dust-related services for three key socio-economic sectors (air quality, aviation and solar energy)
- By producing an advanced dust regional model reanalysis (with high spatial and temporal resolution) for Northern Africa, Middle East and Europe, covering the satellite era of quantitative aerosol information
- Reanalysis evaluation using a wide variety of observations

Dust-related Climate Services

<mark>SDS IMPACTS</mark>

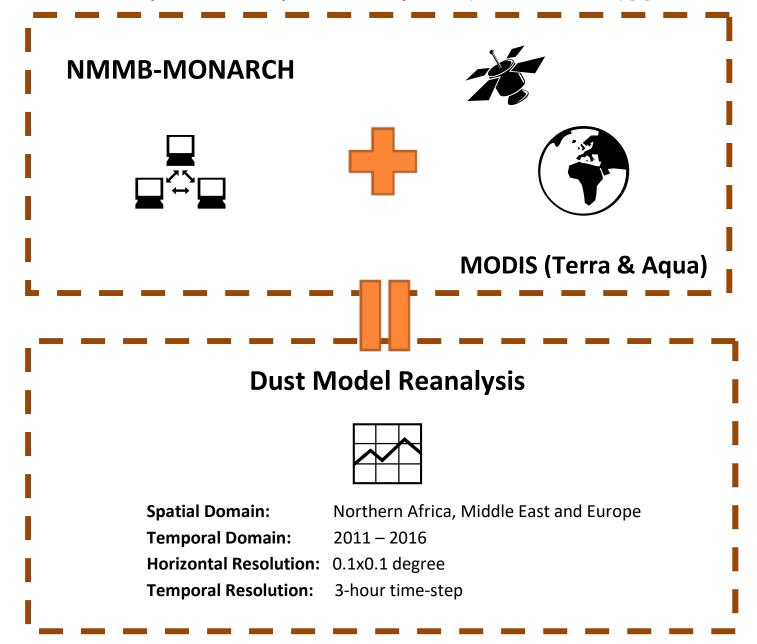
Air Quality/Human Health:

- Respiratory problems
- Cardiovascular diseases
- Bacterial infections (e.g. meningitis)

Transportation/Aviation:

- Low visibility
- Mechanical damages (e.g. engine erosion)

Solar Energy:


- Reduced incoming solar irradiance
- Soiling on panels
- Low energy production

DustClim Reanalysis products, to assess dust impacts:

- Columnar and surface dust concentration (available in 8 size bins)
- Dust load
- Dry and wet dust deposition
- Dust optical depth (DOD) and coarse dust optical depth @ 550nm
- Dust extinction coefficient profiles @ 550nm

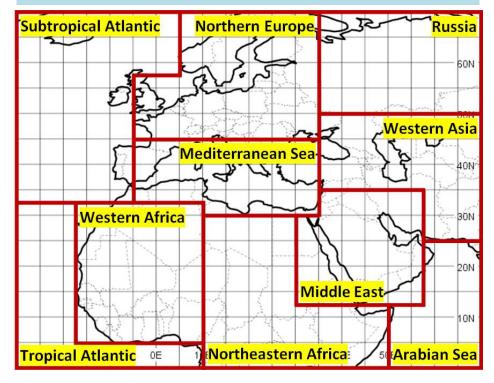
DUSTCLIM REANALYSIS

Assimilation of dust-related MODIS [2] observations, in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (NMMB-MONARCH) [3]

REANALYSIS EVALUATION

Evaluation of MONARCH Reanalysis through synergy and integration of different measurement techniques (in-situ, remote sensing, active, passive)

High quality & harmonized datasets used in the evaluation

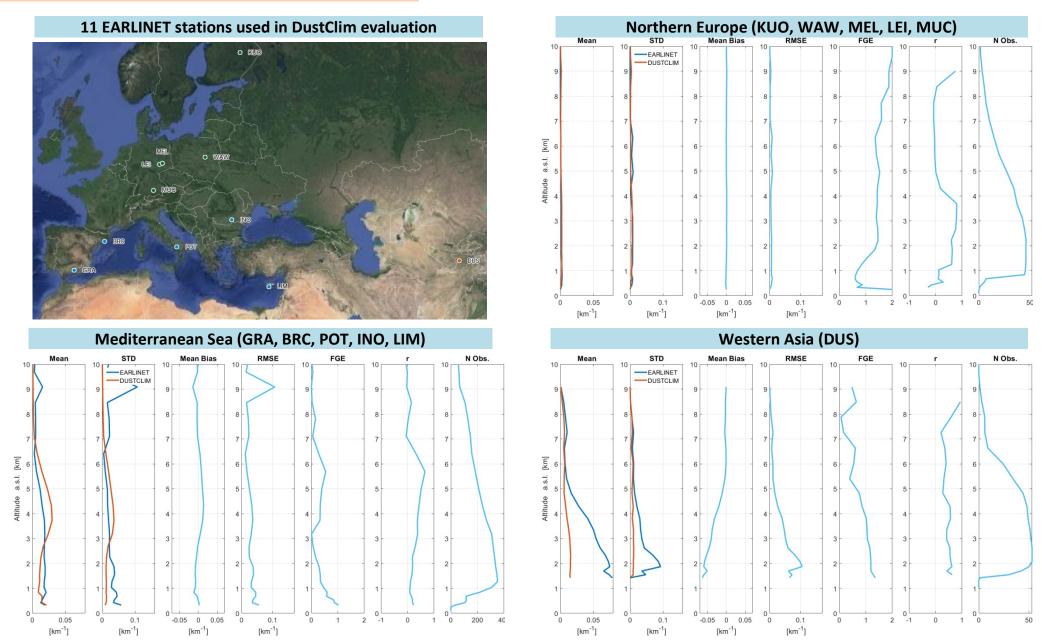


Dust Extinction Profiles: LIVAS [4], EARLINET [5] DOD: AERONET [6], MISR [7], MODIS-DUSTGLASS [8] Dust PM10: INDAAF/SDT [9]

Evaluation metrics used to quantify the mean departure between modelled (c) and observed (o) quantities

Statistic Parameter	Formula			
Mean Bias Error	$BE = \frac{1}{n} \sum_{i=1}^{n} (c_i - o_i)$			
Root Mean Square Error	$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(c_i - o_i)^2}$			
Correlation coefficient	$r = \frac{\sum_{i=1}^{n} (c_i - \overline{c}) \cdot (o_i - \overline{o})}{\sqrt{\sum_{i=1}^{n} (c_i - \overline{c})^2} \cdot \sqrt{\sum_{i=1}^{N} (o_i - \overline{o})^2}}$			
Fractional Gross Error	$FGE = \frac{2}{n} \sum_{i=1}^{n} \frac{ c_i - o_i }{ c_i + o_i }$			

Evaluation was applied in various temporal scales (annual, seasonal) and spatial domains (10 sub-regions)

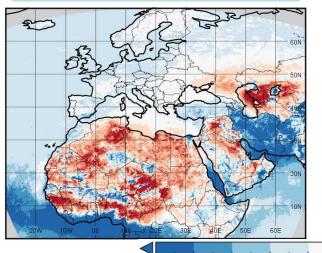


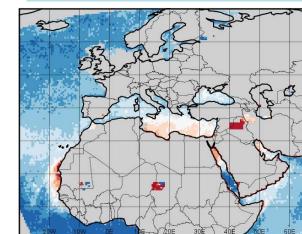
DUST PROFILES EVALUATION – LIVAS Mean Dust Extinction Coefficient per Layer 2011 – 2016

DUSTCLIM @550nm LIVAS @532nm **MEAN BIAS FRACTIONAL GROSS ERROR** 5–7km 300 3 3–5km 1–3km km-1 km-1 -0.015 -0.012 -0.008 -0.005 -0.002 0.002 0.005 0.008 0.012 0,000 0,003 0,007 0,010 0,013 0,017 0,020 0,023 0,027 0,030 0,015

- MONARCH produces similar dust distribution per layer
- Overestimation over source regions, underestimation over the regions of dust transport
- In higher levels model slightly overestimates over both regions

DUST PROFILES EVALUATION – EARLINET Mean Regional Dust Extinction Profiles 2012 – 2016


- Mediterranean: Underestimation between 1 and 3 km and overestimation above that
- Western Asia (Dushanbe): Significant underestimation
- Northern Europe: Similar profiles, high correlation up to 4 km


DOD EVALUATION

DUSTCLIM Mean DOD @550nm

Mean Bias vs MODIS

-0,10 -0,08 -0,06 -0,03 -0,01 0,01 0,03 0,06 0,08 0,10

Regional Evaluation of mean DOD 2011-2016

18°W

28°W

8°W

2°E

12°E

22°E

32°E

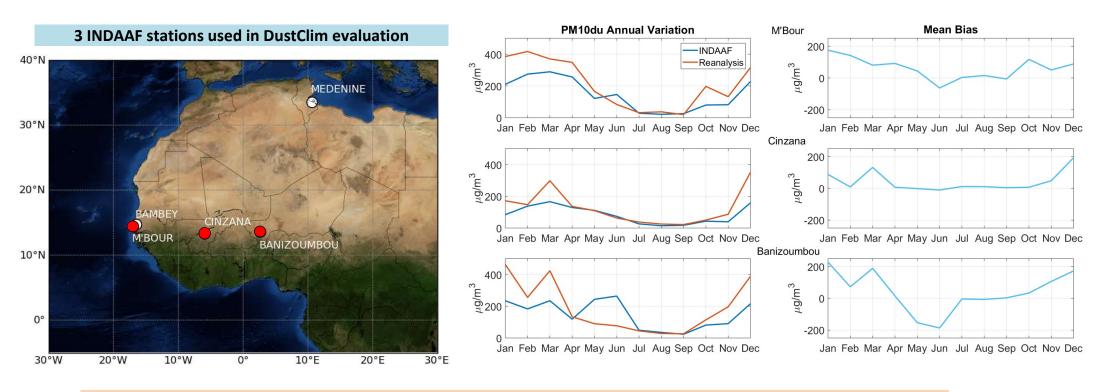
42°E

52°E

62°E

Region	Dataset	MB	RMSE	FGE	r	N. Obs.
Western Africa	AERONET	-0.12	0.26	0.49	0.75	44814
	MODIS	0.02	0.17	0.06	0.83	71855812
Middle East	AERONET	-0.03	0.19	0.45	0.75	26620
	MODIS	-0.01	0.15	0.08	0.78	65426308
Mediterranean Sea	AERONET	-0.02	0.09	0.65	0.77	84117
	MODIS	0.00	0.09	0.46	0.77	40420261
	MISR	-0.01	0.08	0.11	0.69	332770

Mean Bias vs MISR Dark Water


Mean Bias vs AERONET 65°1 0.08 55°1 0.07 0.06 0.05 0.04 45°N 0.03 0.02 0.01 35°N 0.01 0.02 0.03 25°N 0.04 -0.05 0.06 -0.07 15°N -0.08 -0.09

0.1

72°E

- Source Regions: High correlation and low FGE (except AERONET)
- Mediterranean: Low absolute MB and RMSE
- Differences among datasets are related to different DOD retrieval methodologies

DUST CONCENTRATION EVALUATION Dust PM10 2011 – 2014

- Reanalysis represents well the seasonal cycle of the dust concentrations
- Near-zero MB during wet season (July September) Overestimation during the dry season (November-May)
- Banizoumbou: Underestimates extreme dust concentrations, during the transition to the wet season

CONCLUSIONS

- Good performance of the model in reproducing the average spatial distribution of the desert dust
- Dust Extinction up to 5 km and DOD comparison shows an overestimation of the atmospheric dust load over the dust sources and an underestimation over the dust transport regions
- Along the Sahelian Belt the surface concentration is overestimated most time of the year (INDAAF), while the DOD is underestimated (AERONET, MODIS)
- Further analysis of the results aims to attribute a general uncertainty to the MONARCH Reanalysis products

- [1] <u>https://sds-was.aemet.es/projects-research/dustclim</u>
- [2] <u>https://modis.gsfc.nasa.gov/</u>
- [3] Di Tomaso et al., *Geosci. Model Dev.*, **10**, 1107-1129, doi:10.5194/gmd-10-1107-2017., 2017.
- [4] Marinou et al., Atmos. Chem. Phys., 17, 5893–5919, https://doi.org/10.5194/acp-17-5893-2017, 2017.
- [5] <u>https://www.earlinet.org/</u>
- [6] <u>https://aeronet.gsfc.nasa.gov/</u>
- [7] https://misr.jpl.nasa.gov/
- [8] Gkikas et al., Atmospheric Research, 226, 152-170, 2019.
- [9] Marticorena et al., Atmos. Chem. Phys, 10, 8899-8915, 2010.

Acknowledgement

DustClim project is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).