
Benoît Hingray1, Guillaume Evin2

1: IGE, CNRS, Grenoble 
2: ETNA, INRAE, Grenoble 

Partitioning uncertainty components of an 
incomplete ensemble of climate projections 
using data augmentation

benoit.hingray@univ-grenoble-alpes.fr   &  guillaume.evin@inrae.fr

EGU2020: Sharing Geoscience Online
https://meetingorganizer.copernicus.org/EGU2020/displays/36913



Motivations 

• Adaptation planers need 
- on regional scales and for the next few decades –
climatic projections but associated uncertainties are large

• To reduce uncertainties, climate scientists need to know 
where they mostly come from, and then 
where allocation of funds / researches has to be concentrated

• Questions: in climatic projections…
— How to obtain a robust partition of uncertainty sources ?
— What is the main effect of each model (each GCM, each RCM, each HM)
— What estimation method is to be used for unbalanced ensembles ? 
— What estimation method is to be used for incomplete ensembles ? 
— What are the largest uncertainty sources ?  
— Is it possible to narrow total uncertainty ?
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• Uncertainty Sources in Multimodel Ensembles (MMEs) 
& The Hawkins and Sutton, 2009 heuristic partitioning approach

• Uncertainty Sources in MMEs of regional projections
– Partitioning Uncertainty with the Quasi-Ergodic ANOVA approach
– Ensemble Mean, Main Effects, Uncertainty estimates 
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• Partitioning Uncertainty in incomplete ensembles with QUALYPSO
• Uncertainty in precip. and temp. EUROCORDEX projections

• Supplementary Material 
– SM1 : More on the Quasi-Ergodic Assumption
– SM2 : Large Scale and Small Scale Components of Internal Variability
– SM3 : Comparing the precision of estimates in the Time Series ANOVA 

and the Single Time ANOVA approaches
– SM4 : More on QUALYPSO



Different uncertainty sources in climate projections

• scenario uncertainty, obtained from the different scenarios of future 
socio-economic development retained by IPCC

• model uncertainty, resulting from imperfections in representations of 
the earth system and of socio-hydro-systems targeted by the climate 
impact analysis

• internal variability, irreductible and resulting from the chaotic nature of 
the climate system



Mean trends and uncertainty sources in climate projections

Global mean temperature

CMIP3 
projections

Internal variability – spread in residuals from climate responses (quasi-ergodic assumption)
Scenario uncertainty – spread between multi-model means of climate responses 
Model uncertainty – spread between multi-scenario means of climate responses 
Climate response of each simulation chain is the long term trend of the variable over CTL+FUT

Relative to 1971-2000

Hawkins and Sutton, 2009, 2011 : heuristic partition

Climate response 
at t for 
Scenario-k/ GCM-i

Internal variability 

are quantified from multi-scenario multi-model multi-member ensembles. 

The heuristic partition of Hawkins and Sutton, 2009, 2011 …



Mean trends and uncertainty sources in climate projections

Internal variability – spread in residuals from climate responses (quasi-ergodic assumption)
Scenario uncertainty – spread between multi-model means of climate responses 
Model uncertainty – spread between multi-scenario means of climate responses 
Climate response of each simulation chain estimated from smooth fits to CTL+FUT simulations

are quantified from multi-scenario multi-model multi-member ensembles. 

Model 
uncertainty

Scenario 
uncertainty

Internal variability

The heuristic partition of Hawkins and Sutton, 2009, 2011 leads to the iconic figures



Hydrological 
Model (HM)

Times series of discharges at 
different locations of the river 
basin

GHG  emission
scenario

Global Climate 
Model (GCM)

Global / regional
Climate Scenarios

Time series of 
Local (spatial) 
Weather Scenarios

xi

y1

Regional Downscaling Model 
(RCM or SDM)

Impact Model 
(e.g. Water Resource 

Managt.) 

For regional climate projections in broad sense (e.g. hydrological) …

Times series of performance / 
impact criteria for different
related eco-socio-systems

And then gives other
components of Model Uncertainty :  
RCM uncertainty, HM uncertainty…

The simulation chain
(GCM+RCM+HM…)
typically includes 
different types of models



Large Scale
Internal Variability
Derived from 
GCM internal variability

Global Climate 
Model (GCM)

Global / regional
Climate Scenarios

Time series of 
Local (spatial) 
Weather Scenarios

xi

y1

Regional Downscaling Model 
(RCM or SDM)

For regional climate projections in broad sense (e.g. hydrological) …

The simulation chain
may additionnally include 
a small scale component 
of Internal Variability 
(disregarded in the following) 

Small Scale
Internal Variability
Derived from the uncertain 
statistical downscaling link 

For 1 GCM run : 50 replicate
trajectories derived with the 
(stochastic) SDM d2gen 

Mean downscaled 
trajectory from the 50 replicates 

P DJF Durance River

>> see Supplementary SM2 for more 
and (Lafaysse&al, 2014, Vidal&al2016) 



… uncertainty sources are then estimated with ensembles of 

  

  

  

NG GCMs
x
M runs 

NP Impact Models

NS emission
scenarios

NR RCMs
x N replicates 

– multiple scenarios 
– multiple GCMs (the norm) 
– multiple RCMs / Impact Models (also almost the norm) 
– multiple GCM runs (to be perhaps a also norm)
– multiple replicates of the downscaling model (unusual yet)

The « cascade » of uncertainty

(Scenarios/Models + Internal variability)



Times Series ANOVA approach with the Quasi-Ergodic assumption (Hingray&Said, 2014)

STEP 1: For each GCM/RCM/HM… simulation chain

a. Estimation of the climate response
b. Estimation of internal variability from the deviations from the climate response
c. Estimation of the climate change response : response(FUT) – response(REF)

t

Y

Climate Response 
at t
of chain 1
of chain 2
…
of chain N

One experiment with chain
GCM « g » / RCM « r » / HM « h »…

Or multiple experiments 
if multiple runs of GCM « g »
are available

Internal variability band 
of the chain around its 
climate response

Which method for a Hawkins and Sutton like analysis
For ensembles with multiple types of models (GCM, RCM, HM…)

Quasi-Ergodic assumption (see Supplementary SM1 for more), in short : 
Sample variance of  Y at t ≈ temporal variance of  Y for one run (or multiple runs if any)



Which method for a Hawkins and Sutton like analysis
For ensembles with multiple types of models (GCM, RCM, HM…)

STEP 2:  ANOVA : from the climate change responses of all chains in the ensemble

The change response Xs,g,r(t) at t for chain = [scen. « s », GCM « g »,  RCM « r », … ]
is assumed to be the sum of the main effects of scenario « s », GCM « g », RCM « r » , …: 

xs,g,r(t)  = m(t) + Ss(t) + Gg(t) + Rr(t) + …+ e(s,g,r,…,t)

m(t) : ensemble mean change response for t    
Ss(t) : main effect of scenario « s » for t, s = 1..NS
Gg(t) : main effect of GCM « g » for t, g = 1..NG
Rr(t) : main effect of RCM « r » for time t, , r = 1..NR

e(s,g,r,…,t) : model residuals (including interactions (scenario/GCM, GCM/RCM…))

With constraints : sum of scenario effects = 0, sum of GCM effects = 0 …. 



Which method for a Hawkins and Sutton like analysis
For ensembles with multiple types of models (GCM, RCM, HM…)

Change 
response 

X(t)

The main effect of GCM1 for t is the mean deviation (vertical bold red arrow) 
of GCM1 climate response (bold red line) over all scenarios/all RCMs…. 
from the multimodel mean response (orange)

Climate responses of 
the different RCMs 
driven by GCM 1
(one response by RCM)

Climate responses of 
the different RCMs 
driven by GCM 2

Climate responses of 
the different RCMs 
driven by GCM 3

Nb : Vertical red, green, blue bold arrows are the main effects G1(t), G2(t) and G3(t) of GCM 1, 2 and 3 respectively
This scheme is for a MME configuration where only one scenario is available. Same principle for multiscenario MMEs

A similar representation would highlight the main effects R1(t), R2(t) … of the different RCMs (or scenarios, or HMs…)

STEP 2:  ANOVA : from the climate change responses of all chains in the ensemble

a.  An estimate of the ensemble mean, of the main effect of each scenario,
of each model and of interactions between scenario/GCM, GCM/RCM, ….

mean response of the ensemble

STEP 2:  ANOVA : from the climate change responses of all chains in the ensemble

The ANOVA gives



Which method for a Hawkins and Sutton like analysis
For ensembles with multiple types of models (GCM, RCM, HM…)

STEP 2:  ANOVA : from the climate change responses of all chains in the ensemble

The ANOVA gives next
b. Estimates of scenario uncertainty and of the model uncertainty components

c. An estimate of total uncertainty variance :  T(t) = S(t) + G(t) + R(t) + RV(t)

Where : S(t) : Scenario Uncertainty variance
G(t) : GCM Model Uncertainty variance
R(t) : RCM Model Uncertainty variance
…
RV(t) : Residuals variance

Scenario uncertainty 
GCM uncertainty     
RCM uncertainty
HM uncertainty
…

– spread between the main effects of the different scenarios
– spread         ….                        of the different GCMs
– spread         ….                        of the different RCMs
– spread         ….                        of the different HMs
… 

Important Note : in most cases, this « Time Series ANOVA » gives a more precise and robust
estimate of all uncertainty components than the « Single Time ANOVA » (Hingray et al. 2019). 
See Supplementary material SM3 at the end of the ppt for more



Illustration : ADAMONT projections: Haut Verdon, French Alps

temperature precipitation19 ADAMONT 
experiments 
(Verfaillie et al . 
2018) 
available 
from 
5 GCMs
6 RCMs
From 
EuroCordex

(Evin et al. 2019)

STEP 1:  a. Estimation of climate responses from times series of raw projections

Notes : 1. the different RCMs driven by the same GCM share the same color
2. The figures of this illustration are extracted from Evin&al 2019



Illustration : ADAMONT projections: Haut Verdon, French Alps

STEP 1:  b. Estimation of internal variability from the deviations from the climate response

temperature precipitation

Internal 
variability

19 ADAMONT 
experiments 
(Verfaillie et al . 
2018) 
available 
from 
5 GCMs
6 RCMs
From 
EuroCordex

(Evin et al. 2019)

Notes : 1. the different RCMs driven by the same GCM share the same color
2. The figures of this illustration are extracted from Evin&al 2019



Illustration : ADAMONT projections: Haut Verdon, French Alps

temperature precipitation

temperature precipitation

How to read it ? 

For instance : in 2080…
- HadGEM2 warms 1.1°C 

more than the mean
- RCA4 warms 0.7°C 

more than the mean

The change in prec. is
- 13% higher in CNRM-

CM5 than the mean
- 10% higher in WRF than

the mean

Note : the colored bounds give
the uncertainty of the 
estimation of each effect

STEP 2 :  ANOVA for each t gives

>> a. estimates of Main Effects  



Illustration : ADAMONT projections: Haut Verdon, French Alps

STEP 2 :  ANOVA for each t

temperature

precipitation

>> Mean trend + total uncertainty 
(without RCP uncertainty)

>> Contribution 
(% Total variance) 

of each source 

STEP 2 :  ANOVA for each t gives

>> b. estimates of : 

RCP4.5 RCP8.5



But… EUROCORDEX is
an incomplete ensemble : 
A lot of missing GCM x RCM 
combinations …

This is a very usual configuration…

Here, simple ANOVA approaches are not suited.  
They often lead to biased estimates of uncertainty components.

Partitioning uncertainty sources in incomplete ensembles

EUROCORDEX projections, at least 87 experiments available todate : 
– Transient : +1980-2100+
– Resolution : 12.5km
– RCP2.5, 4.5, 8.5
– 9+ GCMs 
– 13+ RCMs 

Models allowing for a 
almost complete MME

RCM GCM

They often require to drop a large number of experiments in order to have
a complete or almost complete ensemble (waste of information) ….
> e.g. 5x4 GCMsxRCMs from EUROCORDEX in Christensen&al. ClimDyn2020



Partitioning uncertainty sources in incomplete ensembles

QUALYPSO : Quasi-ergodic AnaLYsis of climate ProjectionS 
using data augmentatiOn (Evin et al. 2019)

A Bayesian estimation approach
based on data augmentation 
techniques which allows for : 

• The reconstruction of all missing
GCM x RCM combinations

• The estimation of main effects
for all scenarios, GCMs, RCMs

• Provides in addition the 
uncertainty of estimates

The same 2 steps estimation:

Step 1 :  a. Climate response of each chain estimated with a trend model (cubic splines)
> inference with Bayesian Methods
b. Climate change response (absolute or relative) / reference period (e.g. 1980-2010)

Step 2 :  ANOVA on climate responses > main effects + uncertainty components
> inference with Bayesian Methods and Data Augmentation



Results from the 87 projections of EUROCORDEX 
Mean projected changes for annual precip. and temperature

Extracted from : Evin, G., Hingray, B., Somot, S., (in prep) Uncertainty sources in Eurocordex Precipitation 
and Temperature projections : internal variability, scenario and model uncertainty, GCM and RCM effects. 
Note : following results have been obtained "using smoothing splines (extended QUALYPSO method):" 
https://cran.r-project.org/web/packages/qualypsoss/index.html

End of Century (EoC - 2071-2099) compared to REF (1981-2010) for 30-year averages.



Results from the 87 projections of EUROCORDEX 
Mean projected changes (EoC) for annual precip. and temperature

Total Uncertainty (without RCP uncertainty)



Annual temperature change (EoC)
Fractional variance for each uncertainty source



Annual precipitation change (EoC)
Fractional variance for each uncertainty source



JJA Temperatures changes (EoC) : GCM main effects 



JJA Temperatures changes (EoC) : RCM main effects 



Conclusions and perspectives

• Most ensembles of projections are incomplete. This requires an appropriate 
statistical framework to estimate mean trends and to quantify / partition uncertainty

• QUALYPSO strengths : 
– It uses transient simulations and a time series ANOVA approach. This makes 

estimates more robust. It can deal with unbalanced MME (i.e. different #runs btw GCMs)

– It uses data augmentation approaches. Missing chains are reconstructed.
It can then be used as a scenario emulator.

– It exploits all available projections (all chains, all runs). 
This allows avoiding wasting data and allows for more robust estimates  

– It is applicable to all climate projections (hydrology, agriculture, renewable energy)
and can account for additional Model Uncertainty sources (Hydro. Model, …) 

• Results for P/T Projections from 87 EUROCORDEX GCM/RCM chains
– Trends are coherent with previous studies 
– Precipitation : Largest contribution is RCM uncertainty in many places
– Large land/sea contrasts are obtained for many RCMs, especially for T projections
– A few GCM/RCM have a major contribution to Model Uncertainty in specific areas 

• Package available on CRAN : https://CRAN.R-project.org/package=QUALYPSO

• Coming soon : extended QUALYPSO method with Smoothing Splines: 
https://cran.r-project.org/web/packages/qualypsoss/index.html
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Some Supplementary Material 

• SM1 : Some more on the QEANOVA approach 

• SM2 : Large Scale and Small Scale Components of Internal Variability 
An illustration 

• SM2 : Precision of a time serie and a single time ANOVA 
in synthetic ensembles of experiments

• SM3 : Some more on QUALYPSO



Supplementary SM1. Principles of a QEANOVA approach

From 

Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty 
components in a multimodel multireplicate ensemble of climate projections. 
J.Climate. 27(17); pp. 6779-6798. https://doi.org/10.1175/JCLI-D-13-00629.1



The quasi-erdogic assumption for transient climate simulations

Y

For a quasi-ergodic system (stationary + transient state) : 
•ensemble average at a given time t 
= trend at t of the mean for one sequence of events

•ensemble variance (or CV) at t
= time variance of residuals  (or CV)

transient climate

ensemble 
of members
at t 

Sequence of events 
for one member

THUS, the Climate Response and InternalVariability of a given simulation chain
• can be estimated even with a single member

Hingray&Said, 2014



The quasi-erdogic assumption for transient climate simulations

Y

For a quasi-ergodic system (stationary + transient state) : 
•ensemble average at a given time t 
= trend at t of the mean for one sequence of events

•ensemble variance (or CV) at t
= time variance of residuals  (or CV)

transient climate

ensemble 
of members
at t 

Sequence of events 
for one member

THUS, the Climate Response and InternalVariability of a given simulation chain
• can be estimated even with a single member
• can ALSO be estimated with the mutiple members available for the chain

>> The QEANOVA method can make use of all available data for the uncertainty estimation
>> The QEANOVA method can be applied on unbalanced MMEs

(i.e. MMEs where the number of runs differ from one chain to the other). 

Hingray&Said, 2014



Supplementary SM2. Components of Internal Variability

From 

Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty 
components in a multimodel multireplicate ensemble of climate projections. 
J.Climate. 27(17); pp. 6779-6798. https://doi.org/10.1175/JCLI-D-13-00629.1

Vidal, J.P., Hingray, B., Magand, C., Sauquet, E., Ducharne, A., 2016. Hierarchy of 
climate and hydrological uncertainties in transient low flow projections. Hydrol. 
Earth Syst. Sci. 20, 3651–3672,. doi:10.5194/hess-20-3651-2016; 
https://www.hydrol-earth-syst-sci.net/20/3651/2016/



Global Climate 
Model (GCM)

Global / regional
Climate Scenarios

Time series of 
Local (spatial) 
Weather Scenarios

xi

y1

Regional Downscaling Model 
(RCM or SDM)

SM2.Large and Small Scale Components of Internal Variability : Illustration

The simulation chain
(GCM+RCM+HM…) may
additionnally include 
different components 
of Internal Variability

Small Scale
Internal Variability
Derived from the uncertain 
statistical downscaling link 

For 1 GCM run : 50 replicate
trajectories derived with the 
(stochastic) SDM d2gen 

Large Scale
Internal Variability
Derived from 
GCM internal variability

Results (see illustrations in the 2 next slides ) :  
The small scale IV can be as large as the large scale IV 
See (Lafaysse&al 2014, Vidal&al2016). for more

Mean downscaled 
trajectory from the 50 replicates 

P DJF Durance River



SM2. Illustration : Uncertainty in downscaled precipitation

Hingray and Said, 2014

Small scale IV

Large scale IV

SDM

GCM

Durance River 
French Alps
12’000 km2

1 SRES scenario 
6 GCM (CMIP3) 
5 SDMs (TFs, WTs,  Analogs)

20yrs mean, annual precip.
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Lafaysse et al. WRR 2014 50 replicate trajectories have been derived
with each SDM for each GCM run >>
This resulted in a (non-negligible) Small Scale
Component of Internal Variability (SSIV below)



SM2. Illustration : Uncertainty in low flow discharges

1 SRES scenario 
6 GCM (CMIP3) 
5 SDMs (TFs, WTs,  Analogs)
6 HMs (Mordor, Cequeau, GR, CLSM, J2000, Orchidee) 

small scale IV

large scale IV

SDM
GCM

HM

Vidal et al, HESS, 2016

Durance River 
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Vidal et al. HESS, 2014

20yrs means, Min.LowFlow 
– 7days -

The same for hydro projections…50 replicate
trajectories of discharges have been derived for 
each GCM/DSM/HM chain… 

Note also the large contribution of Hydrological Model (HM)



Supplementary SM3. Single Time versus Time Series ANOVA



SM3.Two types of ANOVA approaches for partitioning uncertainty
The Single Time ANOVA and Time Series ANOVA approaches

One major difference : the way the climate response of each simulation chain is estimated …

Single Time ANOVA approach
STANOVA

tk

Y

For each model g, at tk :
climate response = multimember mean at tk
internal variability = inter-member variance

Quasi-Ergodic ANOVA approach
QEANOVA

For each model g, at tk :
climate response = trend estimate at tk
internal variability = time variance of residuals

tk

Y

Requires : Quasi-Ergodicity Hypothesis
Limitation : IV has to be assumed constant or 
roughly constant over time. This assumption can 
be relaxed (cf; Hingray Said, 2014 and the 
LocalQEANOVA approach in Hingray&al.2019)

Requires : multiple runs of each GCM
Limitation : This constraint typically leads to 

drop many GCMs 
(wate of information)

Yip et al. 2011 Hingray and Said, 2014

Climate response Climate response



SM3. Synthetic MMEs to compare the precision of 
The Single Time ANOVA and Time Series ANOVA approaches

To compare both ANOVA estimation methods

• We generated a large number of Multimodel Ensembles (MMEs) for different configurations : 
– different numbers of GCMs (NG)
– different numbers of GCM runs (with a same number M for each GCM), 
– different contributions of internal variability to total uncertainty variance (Fn in %)
– MMEs with different « Mean Response – To – Total Uncertainty » ratios (R2U)

• For each configuration (e.g. NG = 5, M = 3 runs/GCM, R2U = 1, Fn =80%):
– we generated (10’000) synthetic MMEs (sharing the same statistical characteristics (same

Mean Response, GCM effects, Internal Variability) and features (same number of GCMs; 
number of runs / GCM…)

– we then estimated the ability of each method to obtain the true values of the prescribed
uncertainty components (Internal Variability, Model Uncertainty, Total Uncertainty, 
GrandEnsemble Mean).

• The precision is estimated with SD, the standard deviation of the 10’000 estimates of the considered
feature obtained from the 10’000 synthetic MMEs generarted for the considered configuration 

• Next Slide : precision (SD, Y-Axis) as a function of fractional variance due to internal variability
(Fn, X-axis) for different numbers of runs (M) available for each GCM (the different lines)

nb : QEANOVA can be applied even if only one run is available, STANOVA not
Fn = 1 >> Total Uncertainty is fully due to internal variability (no uncertainty due to the GCM)
Fn = 0 >> Total Uncertainty is fully due to the spread between GCM responses (no internal variability)

The gain in precision obtained with a QEANOVA is given in the 3rd column



SM3. Single Time versus Time Series ANOVA

Extracted from
Hingray et al. 2019

The smaller the SD 
value, the better 
the precision of the 
estimate

Estimates of 

Internal Variability 

Model Uncertainty 

Total Uncertainty



SM3. Two flaws of a single time ANOVA

Time (t)

X

simulation chain B
multiple members

t1 t2

simulation chain A
multiple members

Single Time ANOVA : uncertainty analyse based on
projections available at a single projection lead time

1.  The STANOVA thus requires multiple runs  
but those are rarely available for all chains in 
todays MMEs

2.  In case of a small number of runs and / or in 
case of a variable with a large internal variability
(e.g. precipitation and all precipitation related variables 
(discharges)), the estimation of the climate
response of a given scenario/GCM/RCM/…. Chain 
is likely poor. 

Conequences : 
 This leads to poor estimates of effects of the 

different models and poor robustness of all 
uncertainty estimates

 This poor robustness is typically expressed as 
a low temporal coherency of estimates from
one projection lead time to the other

 This leads also to a likely high sample
dependency (dependency to the run(s) available)

See Illustration next  slide for 3 different synthetic ensembles. The precision of estimates obtained for the 2nd 
synthetic MME is very law. This is obviously to be related also with the very poor temporal robustness of estimates

Note : those MMEs are irrealistic as we considered that we have 3 or 9 runs available for each GCM)



SM3.90% Confidence Intervals of Internal Variability (sh) and GCM Model 
Uncertainty (sa) estimates for 3 different synthetic ensembles

M = 3, Fn=10% M = 3, Fn=50% M = 9, Fn=50%

Estimates with a 
Quasi-Ergodic ANOVA

(QEANOVA)

Estimates with a 
Single Time ANOVA

(STANOVA)

• 5 GCMs
• M: Number of runs  

available for each GCM
• Fn : Fraction of total 

uncertainty explained 
by Internal Variability

Ensemble MME#1 Ensemble MME#2 Ensemble MME#3

Internal 
Variability

GCM
Uncertainty

Extracted from
Hingray et al. 2019

Reference 
variances
(known)

Estimated
variances 
+ 90% CI

The same MME, 
with larger IV 

The same MME, 
with more runs (9) / GCM 



Supplementary SM4. Principles of QUALYSPO

Bayesian Inference

From 
Evin, G., Hingray, B., Blanchet, J., Eckert, N., Morin, S., Verfaillie, D. 2019. 
Partitioning uncertainty components of an incomplete ensemble of climate 
projections using data augmentation. J.Climate. 
https://doi.org/10.1175/JCLI-D-18-0606.1


