Chronometric measurements in Geodesy and Geophysics

Pacôme Delva¹ - Guillaume Lion²

¹SYRTE – Observatoire de Paris ²IPGP - IGN

EGU General Assembly – Session G4.2 4-8 May 2020 - Vienna - Austria

Systèmes de Référence Temps-Espace

- New type of geodetic observable: geopotential differences directly observed
- Mass sensitivity: complementary to gravity and gravity gradients
- Spatial resolution beyond that of satellite techniques
- Reduction of heterogeneities in coverage of ground measurements
- Comparisons over long distance

Clocks to improve the determination of the geopotential

An example in France

9 Massif central

- Moderately mountainous terrain
- Intermediate gravity data coverage: 149522 data (BGI)

Methodology

Tools: Generation, analysis and estimation of a gravity field model

Evaluation of the contribution of clock measurements by comparing the solutions #1 and #2 wrt a reference solution #0

- **#1**: only from gravity data
- #2: from gravity and potential data

T is estimated on a regular grid interval of 10 km using the Least Squares Collocation method (LSC) [Moritz, 1980]

Geopotential determination

- 4374 reduced gravity data δg
→ noise = 1mGal
- 33 potential data T
→ noise = 0.1 m²/s²

How to select the gravi points ?

- \rightarrow Data reduction from the ~150000 locations
- \rightarrow Distance between each point ~6.5 km
- → Each point is weighted (number of real points in the vicinity)

How to select the clock points ?

- \rightarrow T more sensitive to medium wavelengths λ than δg
- → The location of the clock points is chosen to better complete the gravity network

- \rightarrow T at same location as δg
- → Red points are an example of "handmade coverage" (not optimized)
- White noise is added to the perfect synthetic data

- \rightarrow Allow to reduce the bias and improve the accuracy
- \rightarrow Fix medium wavelenght of the gravity field recovery
- → Complement existing surface information on the gravity field

- Solving complex optimization problems by simulating the process of biological evolution
- Genetic Algorithm: ε-MOEA (Multi-Objective Evolutionary Algorithm)
- The user can define: objectives, constraints, ε-dominance (tolerance on the value of the objectives)
- The method provides a set of Pareto optimal solutions

Objectives

ID - Lat - Lon - h - Binary

- → Minimize the reconstruction residual on T (bias μ and RMS σ)
- → Minimize, fixe or set free the number of clock data N

Constrains on a clock point and the area

- ightarrow At the same place as a gravity point
- ightarrow In an area poorly covered by gravity
- \rightarrow On land
- \rightarrow Minimum distance between 2 clock points
- ightarrow Regional area is subdivided

N=33 clock data from a set of 2154 distinct gravity location points

→ For the same number of clock data, GA offers different solutions with a strong bias (RMS) and good RMS (bias), or a trade-off

Geopotential determination with genetic algorithms

Fixed N clock data from a set of 577 points

- → Better solutions are found when the design space exploration is better pre-selected
- → Similar residuals are found with different clock data network

Lion et al. (in preparation)

Distribution with variable N \in [5; 50]

Lion et al. (in preparation)

Where to measure the potential?

Geopotential determination

Alps – REFIMEVE **Preliminary results - work in progress -** *Lion et al.*

→ Local improvement in areas where we put clock data along the fiber network
→ Need a homogenous coverage to eliminate the trend on the global region

Clocks for monitoring mass transporting

geodynamic processes?

Monitoring geodynamics

Characterizing geological processes: magmatic or tectonic deformation

eg. Etna volcano: clocks "today" could see the uplift (8 cm) and mass redistribution caused by an inflating magma chamber (if integrated for about ten days, 1yr, resp.)

 \rightarrow But the authors considered only white frequency noise for the clock

Gravity and geopotential signal

Geopotential anomaly ΔU and gravity anomaly Δg of a buried sphere \rightarrow Bondarescu et al. (2012)

Monitoring geodynamics

- Groundwater storage
- → monitoring and quantifying water mass changes
- \rightarrow Approximation planar disk

Mehlstaubler et al. (2018)

Radius S ₀	∆g [µGal]	ΔN [mm]
10m	7,71	0,0001
100m	13,15	0,0014
1km	13,77	0,0141
10km	13, <mark>83</mark>	0,1400
100km	13, <mark>83</mark>	1,3650
1000km	13, <mark>83</mark>	10,7170

Detection threshold of a clock (1 cm)

Monitoring geodynamics

Subduction zone

- Deeper pre-seismic signal
- Large scale deformation

Hard to quantify changes at greater depths

→ Clocks sensitive to mass redistributions at depth

→ first optical frequency transfer experiment + first noise characterization of submarine fiberlinks for frequency metrology [Clivati et al., 2018]

 \rightarrow stability of 10⁻¹⁶ could still be achieved over thousands of kilometers ²⁰

Quantum metrology and relativistic geodesy provide novel methods for geodesy and Earth observation !

Optical atomic clocks....

- provide complementary information to surface and satellite data, particularly in areas poorly covered by gravity data
- can improve the geopotential reconstruction: bias (by a factor 3) and accuracy (more than 2 orders of magnitude)
- ✓ can connect distant area: coherent fibre links
- could resolve discrepancies in classical realizations of height systems and geoid solutions (using GNSS, levelling and gravimetric data)
- could compare different national height systems with different datum
- could monitoring mass redistribution and geophysical processes

future work !

Thank you for your attention!

Pacôme Delva - Guillaume Lion