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instrurr;ental noises. Hence, the operating constrailzts of these data require Analysis of Time Series software (DATimeS) expand established time-series rime series sofjcware (DATlmeS) e usgd. Flgur(? . Thereafter, " evalua’Fed 50
| e : , t Conste o g : interpolation methods with a diversity of advanced machine learning fitting and the reconstruction effectiveness by running a variety of powerful interpolation o.2 | : ‘ £ | o Y\
sever: gssenf 1a pl;e:cprocessmg SlipS'despiu?‘ V.I‘_’;’ tentr?'lmtmgk c;] reach towar f’c smoothing algorithms. algorithms to reconstruct the FAPAR information on a selected date and N F so [HALE
mont cclmng Od vegetation se?sona fren > T( acl II ade SIS a5 ’I zere We presen compare it with a previously map from the FAPAR time series to be used as a oo | NS
_z;n Zn -to;gnt E-rOC:SS-m% sott\./vareI rargelwor applie tct> derI;tme— |ma]§;es‘,'c ined “ﬂ} Resampling ARTMO Model Dat'meSﬂDatlmes Phenology reference for assessment purposes, being the date 03-01-2019. Finally, we —_— | 100 |18
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machine learning regression algorithm (MLRA) using simulated data coming from 5 L P g 2018 2019 2020
L . L _ versus reconstructed map. Four statistical assessment measures are used to
radiative transfer models. Among various tested MLRAs, the variational Figure 1. Treatment steps . evaluate Table1 Figure 5. Regio of interest .
heteroscedastic Gaussian process regression (VHGPR) was evaluated as best Model creation ] ' . Seasonal amplitude: 30%. Season 1 . Seasonal amplitude: 30%. Season 2
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performing. to train the retrieval model. The training and retrieval were

—©— Smoothe W, moothe
conducted in the Automated Radiative Transfer Models Operator (ARTMO) Biophysical retrieval models are generated through a trained machine learning S salsiiiss A R | o @(; E?;aﬁ::f;zs&s&?;::gression 07§ _e_Eranr.liﬁng;izf;fs&:a;:;:gression
software framework. regression algorithm (MLRA), using the retrieval option and simulated data coming image Settings ) o 05? ‘Z? oo
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A demonstration case is presented involving the retrieval of Leaf area index (LAI), * Sentinel-2 (S2) time series collected between 2018 and 2020 with cloud-free. e oo Naimumale 200118210 etplte: EOS 2000117114210
fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from sentinel-2 10 days temporal resolution achieved with Decomposition and Analysis of Time Table 1. Goodness-of-fit statistics and processing time for the reference vs. FAPAR reconstructed R S | 1o ' :
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Ouarizane, Djidioua (1,345,075 pixels) was chosen for this study. A reference

image was excluded from the time series in order to evaluate the reconstruction Vegetation product retrieval ( LAl / FAPAR
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accuracy over a 40-day artificial gap. , . _ 0.0642 0.0854 0.9512 0.9048 .

The reference vs. Reconstructed maps produced by the gap-filling methods were LAl and FAPAR products have been produced from the sentinel-2 imagery obtain from o ol ) oo "
compared with statistical goodness-of-fit metrics. Considering both accuracy and the Copernicus platform; the retrieval step was conducted on the ARTMO software, KNRR 0.1084 0.1500 0.7895 0.6233 | ol | -l a
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Next neighbor int’erpolation (R= 0.90 / 0.081 sec per pixel and R?=0.88 / 0.001 sec sample of the LAl and FAPAR product on Figure.2/3. KRR 0.0711 0.1219 0.8879 0.7884 A0 X6 W b T T i m W ow w0 w0 no v 20 w000 w00 0
per pixel respectively) interpolations proved to reconstruct the vegetation Next 0.0575 0.0824 09411 0.8856 Figure 8. Start of the season __Figure 9.aX|mu vale Figure 10. End of the
products the most efficient, with GPR as more accurate but Next faster by a factor _ MapofFAPAR Estimated R TS, onciusions

of 70.

Finally, we evaluated of the phenology indicators such as start-of-season and end-
of-season based on LAl and FAPAR. The obtained maps provide valid information
of the vegetation dynamics.  Altogether, the ARTMO-DATimeS software
framework enabled seamless processing of all essential steps: (1) from L2A
sentinel-2 images converted to vegetation products, (2) to cloud-free composite
products, and finally (3) converted into vegetation phenology indicators.

Polyfit 0.1610 0.1966 0.6078 0.3694 Continuous spatial information about phenology has proven to be paramount, especially
during this Covid-19 pandemic, this research presents the exploitation of two powerful tools
for different steps of the phenological parameters extraction. The uncomplicated creation of

Phenolo o indication vegetation product retrieval model with the ARTMO toolbox. A critical comparative analysis

. . . . . of the capability of five different algorithms for biophysical variables reconstruction, Results
Aiming to study the seasonal pattern in vegetation variation, Datimes was used. . . .

. . . . . o show that the GPR interpolation outperforms the other models in terms of model accuracy
Firstly, a region of interest was created and applied to the time series in order to

derive bhenological variables such as the start and end of a erowine season. Fieure 5 (R2 = 0.905, RMSE = 0.85). KRR achieves the second-best results in terms of performance
P 8 8 5 T8 (R2 = 0.788, RMSE = 1.22) and also ran four times faster than GPR, which means that this
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eis o S = P s o method offers excellent potential to deliver near-real-time operational products. Last, we
_ obtained the different seasons in our time-series with Datimes that permit us to obtain
. Figure 3. Map of LAI. : : .
Figure 2. Map of FAPAR. phenological parameters that allow as to conduct yield prediction.
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