

A transportable absolute Quantum Gravimeter employing collimated Bose-Einstein condensates

Waldemar Herr for the Institute of Quantum Optics team

State of the art atom gravimeters

 $\textbf{CAG} @ \text{Paris}_{{}_{[1]}}$

	-
μ Gal	μ Gal
1.2	0.5
3.2	0.1
0	< 0.1
-13	< 0.1
-2.1	0.1
-5.3	1
0	4 (1)*
-23.2	4.3
	μGal 1.2 3.2 0 -13 -2.1 -5.3 0 -23.2

* Karcher, et al., NJP 20, 2018

GAIN @ Berlin [2]

Systematic effect	Offset	Error
	(nn	n/s^2)
Raman Wavefronts	28	± 22
Coriolis Effect	0	± 15
Magnetic Field Effects	0	± 10
RF Group delay	0	± 10
Self Gravitation	-19	± 5
Reference Laser Freq.	12(10)	± 5
Synchronous Vibrations	0(-92)	$\pm 5(50)$
AC Stark Shift (1PLS)	0	± 5
Rb background vapour	-5	± 3
AC Stark Shift (2PLS)	0	± 2
vertical alignment	0(1)	± 1
Total	16(-77)	$\pm 32(59)$

AQG from Muquans [3]

Sensitivity:	50 μ Gal/ \sqrt{Hz} at a quiet place
Measurement frequency:	2 Hz
Long-term stability:	< 1 µGal
Accuracy:	under evaluation

 [1] B. Fang et al., "Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications", J. Phys. Conf. Ser. **723**, (2016)

- [2] C. Freier et al., "Mobile quantum gravity sensor with unprecedented Stability", J. Phys. Conf. Ser. **723**, (2016)
- [3] www.https://www.muquans.com/product/ absolute-quantum-gravimeter/

© W. Herr All rights reserved

EGU2020 – Transportable Quantum Gravimeter-1

Today's most accurate atom gravimeters

CAG @ Paris [1]

Systematic effect	Correction	U
	μ Gal	μ Gal
Alignement	1.2	0.5
Frequency reference	3.2	0.1
RF phase shifts	0	< 0.1
Gravity gradient	-13	< 0.1
Self gravity effect	-2.1	0.1
Coriolis	-5.3	1
Wavefront distortions	0	4 (1)*
	• • •	L
TOTAL	-23.2	4.3
* Kanahan at al NUE	0040	

* Karcher, et al., NJP 20, 2018

GAIN @ Berlin [2]

Systematic effect	Offset (nn	${f Error} {f n/s^2)}$
Raman Wavefronts	28	± 22
Magnetic Field Effects	0	± 15 ± 10
RF Group delay Self Gravitation	0	$\pm 10 + 5$
Reference Laser Freq.	12(10)	± 5
Synchronous Vibrations AC Stark Shift (1PLS)	$0(-92) \\ 0$	$\pm 5(50) \pm 5$
Rb background vapour	-5	± 3
AC Stark Shift (2PLS) vertical alignment	$0 \\ 0(1)$	± 2 ± 1
Total	16(-77)	$\pm 32(59)$

As of today, all atom gravimeters use **thermal clouds** and are limited in their accuracy due to the **Coriolis** and the **Wavefront** distortion effects.

Our Quantum Gravimeter-1 (QG-1) will mitigate these limitations by employing **collimated Bose-Einstein Condensates (BEC)** as probes for atom gravimetry.

 [1] B. Fang et al., "Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications", J. Phys. Conf. Ser. **723**, (2016)

[2] C. Freier et al., "Mobile quantum gravity sensor with unprecedented Stability", J. Phys. Conf. Ser. **723**, (2016)

© W. Herr All rights reserved

EGU2020 – Transportable Quantum Gravimeter-1

Principle of an atom gravimeter

The position wave-function of each single atom within an ensemble is split into two trajectories, mirrored after a time T and recombined at 2T by a last beam-splitter. The gravitationally induced phase difference $\Delta \Phi a$ governs the output of the matter-wave interferometer.

Acquired phase difference due to acceleration a:

Huge magnification factor solely dependent on a measurement of frequency

\rightarrow perfect for high bias stability and absolute measurements

a: acceleration

05/05/20

- κ_{eff} : eff. wave vector (**n** · 2π/λ)
- T: time between pulses

BEC interferometer vs. thermal Al

The measurement is performed with atomic ensembles of high atom number. The better the control over these ensembles, the higher the accuracy of the gravimetric measurement.

Thermal atoms versus BEC:

- **Thermal clouds** at few µK show unfavourable large expansion rate
- **BECs** can be collimated in 3D to drastically reduce expansion rate
- Sub-recoil **BECs** can be detected spatially separated within one image giving 3D position information and reducing detection noise
 - a: acceleration
 - $k_{\mbox{\tiny eff}}$: eff. wave vector $({\bm n} \!\cdot\! 2\pi/\lambda)$
 - T: time between pulses

Page 5

05/05/20

Page 6

BEC interferometer QG-1

Transportable Quantum Gravimeter-1 (QG-1)

© W. Herr All rights reserved

EGU2020 – Transportable Quantum Gravimeter-1

Method now in implementation in QG-1

Collimating a BEC in 3D to 38 pK using an atom chip

The expansion rate of a BEC has been strongly reduced at a TF-radius of 50 μ m (t=0) by the magnetic lensing technique and reached a final TF-radius of only <120 μ m after t=2000 ms of free propagation.

The same technique will be employed in QG-1 to freeze-out the expansion rate of the BEC for the interferometer time of 2T=200 ms.

EGU2020 - T

2T

GAIN [2]

22

15

32

ransportable	Quantum	Gravimeter-1	
--------------	---------	--------------	--

(projected)

< 0.4

< 0.3

<1

Quantum Gravimeter-1

Atom Gravimeter

Laser cooled atoms show large expansion rates and a horizontal initial velocity

CAG [1]

40

10

43

Conclusion and accuracy estimation

Magnetically collimated BECs do almost not expand and drop controllable downwards	
о + + с	
r —	π/2 •
Г 🕂	π/2
QG-1 [3]	Recor

rding 3D position information to mitigate Coriolis effect

lp+2ħk>

lp>

[3] N. Heine et al., "A transportable quantum gravimeter employing delta-kick collimated Bose-Einstein condensates", Under revision.

05/05/20

2T

Systematic effect

 $(in nm/s^2)$

Wavefront distorsion

Coriolis effect

Total

Thank you for your attention

