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• Jakobshavn Isbrae has rapidly accelerated 
and retreated since the late 1990s, 
entering a phase of stability from ~2004 
onwards.

• Further retreat from 2009, with maximum 
speeds attained in 2012 and 2013.

• Modest deceleration, readvance and 
thickening since 2016.

1. Background
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Velocity structure and smoothed quarterly calving fronts for Jakobshavn Isbræ. Background images from 
Landsat 8, August 9th 2016. Velocity from [1] (version 4). Calving fronts from [2], [3]. Thicker calving front 
denotes winter position.
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2. Calving rate, 2009 to 2017
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𝑢𝐶 = 𝑢𝑇 − Τ𝜕𝐿 𝜕𝑡
• Error bars on calculated mean annual calving rate are very 

wide! (not shown)

• Correlation between 𝑢𝐶 and 𝑢𝑇 for most years. Delayed 
deceleration from 2016 to 2017 following reduction in calving 
rate. Suggests influence of rate of calving on flow dynamics.

• Can we drive ice flow evolution by an applied calving rate?

Timeseries of calving front position along flowline. Calving fronts from [2], [3]

Timeseries of ice velocity, data from [4],[5], extends previous timeseries
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Mean annual calving rate (red) and terminus velocity (green) 
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3. Transient ice sheet model initialisation in BISICLES [6]

• Optimise fields for basal traction coefficient (𝐶) and stiffening factor (𝜑) for by minimising an objective function[7]:

𝐽 = Ω 𝛼𝑢
2 𝑥, 𝑦 𝒖 − 𝒖𝑜

2 ⅆΩ + 𝛼𝐶 Ω 𝛻𝐶 2 ⅆΩ + 𝛼𝜑 Ω 𝛻𝜑 2 ⅆΩ

• 𝐶 and 𝜑 input fields produced for individual quarterly periods from 2009 to 2017, by applying additional transient 
regularisation to suppress high frequency temporal variation.

• The resulting fields will be used as inputs for the forward modelling run.

Inverted ice stiffening factor, Q1 2009. Vertically-integrated effective 
viscosity: 𝜑ℎ ҧ𝜇

Inverted basal friction coefficient, Q1 2009. Sliding law: 𝝉𝑏 = −𝐶𝒖
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4. Calving rate application in BISICLES

𝒖𝐶 𝑥, 𝑦 = 𝒖𝐶
∗ ∙
𝒖𝑇 𝑥, 𝑦

𝒖𝑇
∗

• Spatial application of calving rate scaled according to the terminus velocity to avoid destroying 
regions of slower-flowing ice (* = measured on flowline): 

• Calving rate applied either annually or as a seasonal sin-wave oscillating about the annual mean
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Demonstration of scheme for spatial application 
of the calving rate Applied calving rate timeseries. Mean annual (red), 5-monthly mean (green), sinusoidal fit to 5-monthly 

mean (blue)



EGU2020-21999

5. Decadal forward model runs

Experiment ϕ and C inputs Calving rate

A Long-term mean Annual mean

B Quarterly timeseries Annual mean

C Long-term mean Sin wave

D Quarterly timeseries Sin wave

• 9 year forward model runs carried out 2009 - 2017. 

• Experiments run for combinations of annual mean or 
sin-wave calving rate, and  static or timeseries basal 
friction and ice rheology.

• Results compared to observations.

• BedMachine v3 [9] bathymetry and initial ice topography.

• Thinning rates from [10].

• Surface mass balance from RACMO [11].

Modelled velocity for Experiments A to D (observed timeseries faded in 
background)
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Modelled calving front advance/retreat for Experiments A to D (observed 
timeseries faded in background)
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6. Conclusions

• By applying a prescribed calving rate, we are giving the model half the picture.

• Model evolution broadly follows the observed decadal pattern when applying the annual mean calving 
rate – model flow adjusts well to the calving.

• Applying a quarterly timeseries of basal friction and ice rheology inputs improves the fit.

• Applying a seasonal oscillation in calving reproduces the annual advance-retreat cycle well. 

• Our experiments neatly bracket the observed calving front position. 
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