An adaptive optimal interpolation based on analog forecasting: application to SSH in the Gulf of Mexico

Yicun Zhen ¹ Pierre Tandeo ¹ Stéphanie Leroux ² Sammy Metref ³ Julien Le Sommer³ Thierry Penduff ³

¹IMT Atlantique, Lab-STICC, UBL, Brest, France

²Ocean-next, Grenoble, France

³Université Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France

May 8, 2020

The 3DA Team

- 2 groups (Brest & Grenoble, France)
- 2 skills (applied mathematics & oceanography)

Methodology: **Analog forecast** + Data Assimilation (AnDA)

Analog forecast: construct an approximate dynamical model at each time step.

Methodology: Analog forecast + Data Assimilation (AnDA)

More details can be found in [Lguensat et al., 2017, Tandeo et al., 2015]

- Use ensemble Kalman filter(EnKF) to calculate the state analysis;
- Use analog forecast (AF) for state forecast;

 Use ensemble Kalman smoother (EnKS) for reprocessing the data.

$$X_{1}^{f} \xrightarrow{\text{EnKF}} X_{1}^{a} \xrightarrow{\text{AF}} X_{2}^{f} \xrightarrow{\text{CNKF}} X_{T}^{a} \xrightarrow{\text{EnKF}} X_{T}^{a}$$

$$X_{1}^{s} \xleftarrow{\text{EnKS}} \xrightarrow{\text{EnKS}} X_{T-1}^{s} \xleftarrow{\text{EnKS}} X_{T}^{s}$$

Numerical Experiments: OSSE and real data application

EXP 1: Comparison of AnDA and optimal interpolation using simulated sea-surface height data.

- comparison of AnDA and a well-tuned simple version of optimal interpolation algorithm (OI).
- Details can be found in: [Zhen et al., 2020]

EXP 2: Comparison of AnDA results and SSH reprocessed data.

 comparison of AnDA and an operational optimal interpolation algorithm (DUACS).

EXP 1: OSSE at Gulf of Mexico

- ▶ Dataset ⇒ OCCIPUT simulation (50 members, 20 years, 0.25°, daily, more details in [Bessières et al., 2017])
- Catalog ⇒ the time series of the first 100 EoFs of OCCIPUT dataset (49 members, 19 years);
- Truth \Rightarrow OCCIPUT(1 member, 1 year).
- ► Obs ⇒ simulated along-track obs (without error) of SSH from altimeters in 2004.
- ► Two different OI ⇒ optimal interpolation with well-tuned spatial/temporal correlation scale and a conventional OI ([Le Traon et al., 1998])

EXP 1 (OSSE): SSH time series

EXP 1 (OSSE): SSH temporal spectrum

 \Rightarrow AnDA has a better energy cascade (energy does not collapse on small scales like OI)

EXP 1 (OSSE): SSH mapping errors

- Absolute error and estimated std are well correlated in AnDA
- Estimated std is observation-dependent in Ols
- Estimated std is flow-dependent in AnDA

EXP 1: Conclusions

- AnDA avoids tuning of spatial and temporal correlations.
- AnDA captures rapid fluctuations.
- AnDA provides better estimates of error maps.
- \Rightarrow These three properties are due to the use of analogs.

EXP 2: comparison of DUACS and AnDA using real SSH/SST

- ► Dataset ⇒ DUACS-two-satellites reprocessed SSH data and REMSS reprocessed SST data (1998-2018, 0.25°, daily).
- ► Observations ⇒ the satellite altimetry data used to create DUACS-two-satellites product, and the REMSS reprocessed SST data (from 01/06/2015 to 31/05/2016).
- ► Truth (reference) ⇒ the satellite altimetry data that were not used to create the DUACS two-satellites product (from 01/06/2015 to 31/05/2016).
- Catalog (AnDA(SSH)-2sats) ⇒ 100 EoFs of SSH_{DUACS2sats} (1998-2018).
- Catalog (AnDA(SSH+SST)-2sats-2sats) ⇒ 150 EoFs of (SSH_{DUACS2sats}, SST_{REMSS}/4) (1998-2018).
- Catalog (AnDA(SSH+SST)-2sats-allsats) ⇒ 150 EoFs of (SSH_{DUACSallsats}, SST_{REMSS}/4) (1998-2018).

EXP 2: why do we consider SST?

EXP 2: Patchwise implementation of AnDA

- AnDA is implemented independently for each patch.
- Solutions for each patch are merged to get a complete SSH map.

EXP 2: why don't we use OCCIPUT simulation as the catalog?

- Discrepancy between the attractors of OCCIPUT simulation and DUACS reprocessed data.
- AnDA would not be reliable if the observation and the catalog lie on different attractors.

EXP 2: numerical results

Truth (reference) \Rightarrow satellite altimetry observations that were not used to create DUACS-2sats.

RMSE(cm)	DUACS-2sats	AnDA(SSH)-2sats	AnDA(SSH+SST)-2sats-2sats	${\sf AnDA(SSH+SST)-2 sats-all sats}$
2015.6-2015.11	4.301	4.522	4.260	3.416
2015.12-2016.5 2015.6-2016.5	4.134	4.296	4.103	3.182 3.320

- AnDA(SSH+SST) slightly improves DUACS reanalysis in most of the locations and time.
- Both AnDA(SSH+SST) and DUACS are better than AnDA(SSH)
- Better catalog \Rightarrow better results for AnDA.

EXP 2: numerical results

- Minor differences between the geostrophic velocities of AnDA DUACS.
- AnDA reduces the estimated std.
- AnDA interpolates SST at the same time.

EXP 2: Conclusions

Take home message:

- AnDA is a multivariate interpolator (both SSH and SST).
- AnDA results are improved using microwave SST.

Work in progress:

- Comparison of AnDA and DUACS when all satellite altimetry data are assimilated. Need measurement from an independent source for validation.
- Optimization of the data assimilation scheme (estimation of observation error covariance).
- Re-construct the whole SSH/SST time series using AnDA and use this new time series as the new catalog.

Thank you! Any question?

Bessières, L., Leroux, S., Brankart, JM., Molines, JM., Moine, MP., Bouttier, PA., Penduff, T.,
Terray, L., Barnier, B., and Sérazin, G. (2017).
Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution.
Geoscientific Model Development, 10:1091–1106.
Le Traon, PY., Nadal, F., and Ducet, N. (1998).
An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean. Technol, 15:522–534.
Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M., and Fablet, R. (2017).
The Analog Data Assimilation.
Monthly Weather Review, 145(10):4093–4107.
Tandeo, P., Ailliot, P., Ruiz, J. J., Hannart, A., Chapron, B., Easton, R., and Fablet, R. (2015).
Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system.
In Machine Learning and Data Mining Approaches to Climate Science, pages 3–12.
Zhen, Y., Tandeo, P., Leroux, S., Metref, S., Le Sommer, J., and Penduff, T. (2020).
An adaptive optimal interpolation based on analog forecasting: application to SSH in the Gulf of Mexico.

Journal of Ocean Technology, in revision.

