

UNIVERSITÉ Grenoble Alpes

Potential impact of climate change on solar resource in Africa for photovoltaic energy: analyses from CORDEX-AFRICA climate experiments*

Adeline Bichet¹, Benoit Hingray¹, Guillaume Evin², Arona Diedhiou^{1,3}, Fadel Kebe⁴, and Sandrine Anquetin¹

1: IGE, CNRS, Grenoble 3: CCBAD, Abidjan, IvoryCoast 2: ETNA, INRAE, Grenoble 4: ESPD, Dakar, Senegal

benoit.hingray@univ-grenoble-alpes.fr

EGU2020: Sharing Geoscience Online

*Bichet et al. Environ. Res. Letters, 2019, vol14

- Adaptation planers for solar resource projects need

 on regional scales and for the next few decades –
 projected trends from climate projections and associated
 uncertainties to assess climate risks of ongoing solar projects
- To improve projections and reduce uncertainties, climate scientists need to know where uncertainty mostly come from, and then where allocation of funds / researches has to be concentrated
- Questions for Africa :
 - What are the projected trends of the solar resource at local scale for the next few decades ?
 - What are associated uncertainty and
 - what are the largest uncertainty sources ?

Mean trends and uncertainty sources in climate projections

are quantified from multi-scenario multi-model multi-member ensembles. They include scenario uncertainty, model uncertainty and internal variability :

The heuristic partition of Hawkins and Sutton, 2009, 2011 ...

Internal variability – spread in residuals from climate responses (quasi-ergodic assumption) Scenario uncertainty – spread between multi-model means of climate responses Model uncertainty – spread between multi-scenario means of climate responses Climate response of each simulation chain is the long term trend of the variable over CTL+FUT

Hawkins and Sutton, 2009, 2011 : heuristic partition

Mean trends and Uncertainty sources in climate projections

are quantified from multi-scenario multi-model multi-member ensembles.

The heuristic partition of Hawkins and Sutton, 2009, 2011 lead to the iconic figures

CINIS

Internal variability – spread in residuals from climate responses (quasi-ergodic assumption) Scenario uncertainty – spread between multi-model means of climate responses Model uncertainty – spread between multi-scenario means of climate responses Climate response of each simulation chain estimated from smooth fits to CTL+FUT simulations What about solar projections for Africa ?

- Solar resource potential (PVpot) = f(Solar Radiation, surface temperature and wind)
- Data available : the outputs of 19 climate experiments from the recent CORDEX-Africa CMIP5 ensemble
- Dat used here :
 - Transient : 1980-2100
 - High resolution : daily, 0.5°
 - For I scenario : RCP8.5
 - 10 GCMs
 - 5 RCMs
- Uncertainty sources are thus here
 - Model uncertainty from GCMs
 - Model uncertainty from RCMs
 - Internal variability (Low frequency variation of the climate variable around its long term trend)

RCM \ GCM	HIRHAM5 (v2)	CCLM 4-8-17 (v1)	RACMO 22T (v1)	RCA4 (v1)	REMO 2009 (v1)
ICHEC-EC-EARTH	x		x	x	X
CNRM-CERFACS- CNRM-CM5		X		X	
MPI-M-MPI-ESM-LR		X		x	x
NCC-NorESM1-M				х	
NOAA-GFDL-GFDL- ESM2M				X	
IPSL-IPSL-CM5A-MR				x	
MIROC-MIROC5				x	
CSIRO-QCCCE- CSIRO-Mk3-6-0				X	
CCCma-CanESM2				X	
MOHC-HadGEM2-ES			X	x	

Partitioning different components of uncertainty

Method : Times Series approach of Hawkins and Sutton 2009 Upgraded with Quasi-Ergodic ANOVA assumption of Hingray et Said, 2014

Step I// Extraction of the climate response (for model uncertainty) and residuals (for internal variability) for each GCM/RCM simulation chain

+ Step 2// ANOVA on climate responses

climate response = trend estimate at t_k internal variability = time variance of residuals

Spread between main effects

- of the different GCMs > GCM Model uncertainty
- of the different RCMs > RCM Model uncertainty

But CORDEX – AFRICA Is an incomplete ensemble of projections... Not all GCM x RCM combinations are available ...

In this typical configuration, almost all Time Series ANOVA approaches can lead to biased estimates of trends and uncertainty components

To fix this limitation, we developed QUALYPSO (Evin et al. 2019),

a bayesian estimation approach

based on data augmentation techniques.

- It reconstructs missing GCM x RCM combinations
- It allows for an unbiaised estimate of GCM main effects, RCM main effects, mean trend... and all uncertainty sources ...
- conditional on the CORDEX-AFRICA ensemble

RCM V GCM	HIRHAM5 (v2)	CCLM 4-8-17 (v1)	RACMO 22T (v1)	RCA4 (v1)	REMO 2009 (v1)
ICHEC-EC-EARTH	x		x	x	x
CNRM-CERFACS- CNRM-CM5		x		X	
MPI-M-MPI-ESM-LR		x		x	x
NCC-NorESM1-M				x	
NOAA-GFDL-GFDL- ESM2M				x	
IPSL-IPSL-CM5A-MR				x	
MIROC-MIROC5				X	
CSIRO-QCCCE- CSIRO-Mk3-6-0				x	
CCCma-CanESM2				X	
MOHC-HadGEM2-ES			X	x	

Results for Solar Potential >>

Projected (relative %) changes of PVpot for late century

Mean projected change (%) : (2070-2100 vs 1980-2010) decrease by 2 to 8% of annual mean in many places expect in south east

+ Different changes for different seasons with a likely monsoon induced change in South Esattern Africa and sahelian region >>

Projected (relative %) changes of PVpot for 9 African regions

Total uncertainty : Bounds of the whole colored area = 90% confidence interval of projections

And Uncertainty Sources GCM uncertainty **RCM** uncertainty Internal Variability Method Residual

CINIS

- Mean decreasing trend in all regions expected in Sub-• South Africa (#8)
- Large dispersion for all regions expected in the Sahara. In all regions, even the sign of changes is uncertain...

Projected (relative %) changes of PVpot for late century

- As a consequence : Low « Response to Uncertainty » ratio (signal to noise)
- >> Rather large changes could occur but very low robustness between models

What are the main uncertainty sources (2070-2100)

5

 Total uncertainty standard deviation (%) of PVpot projections

Largest uncertainty source = f(region)

- Internal Variability in North-West, Africa Horn and South
- RCM in central Africa and a large latitudinal band at the southern Saharian border
- GCM not as large except in some regions: Eastern Sahara, Ethipian Highlands, Guinean Golf...
- Residual contribution is negligible : confirm the additivity assumption of GCM and RCM effects

b) GCM contribution (%)

d) Internal variability contribution (%)

c) RCM contribution (%)

CINIS

e) Residual contribution (%)

Temperature and wind induced changes

- Changes in PVpot (d, top right) are firstly explained by changes in solar radiation (RSDS – , a) top left)
- I or 3 percentage points of decrease (TAS-induced, e) are induced by temperature warming (TAS change, b)
- No-wind induced change is conversily expected
- d) PVpot changes (%) a) RSDS changes (W/m²) 004 -16 -12 -8 -4 0 4 8 12 16 b) TAS changes (°C) e) TAS-induced changes in PVpot (%) c) W10 changes (%) f) W10-induced changes in PVpot (%) 0 -16 -12 -8 -4 0 4 8 12 16 -2 -1 1

Conclusions and perspectives

- High resolution CORDEX ensembles allow for improved projections
- CORDEX-Africa ensemble allow disentangling different sources of uncertainty : GCM, RCM, internal variability
- But to have a robust and unbiased estimate of climate responses and uncertainty components in ensembles with missing chains, robust estimation methods are required. Recommandation :
 - Use transient simulations and a time series ANOVA approach
 - Use multiple runs ensembles if available
 - Use data augmentation approaches
- Projections of Solar Potential in Africa :
 - Tend to decrease. A part is induced by warming.
 Could be detrimental for some solar projects
 - A risk : poor robustness of projections.
 Even the sign of change is uncertain in some areas
 - Is internal variability well simulated in models : to be checked ...
 - Large RCM uncertainty in many places >> RCMs have to be improved...
- Similar analyses to be carried out for other regions and / or other variables

Bichet et al. 2019. Potential impact of climate change on solar resource in Africa for photovoltaic energy: analyses from CORDEX-AFRICA climate experiments

https://iopscience.iop.org/article/10.1088/1748-9326/ab500a

And more on partitioning model uncertainty and internal variability components

Hawkins and Sutton, 2009. The potential to narrow uncertainty in regional climate predictions. BAMS doi:10.1175/2009BAMS2607.1

Hingray et Saïd 2014. Partitioning internal variability and model uncertainty components in multimodel multimember ensembles of projections J.Climate. doi:10.1175/JCLI-D-13-00629.1 QEANOVA matlab package : http://www.lthe.fr/RIWER2030/download_fr.html

Precision of uncertainty estimates : QEANOVA versus Single Time ANOVA

Hingray et al. 2019. Precision of uncertainty components estimates in climate projections Clim.Dyn. https://doi.org/10.1007/s00382-019-04635-1

Incomplete ensembles

Evin et al. 2019.Partitioning uncertainty components with data augmentation
J.Climate. https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-18-0606.1

benoit.hingray@univ-grenoble-alpes.fr