Session <u>HS4.2/NH9.14</u> Drought and water scarcity: monitoring, modelling and forecasting to improve hydro-meteorological risk management 07/05/2020

Space-time variability of soil moisture based drought in the transboundary Koshi River Basin, Central Himalaya

Santosh Nepal ^{a*}, Saurav Pradhananga ^a, Narayan Kumar Shrestha ^{a, b}, Jayandra Shrestha ^{a, d}, Manfred Fink ^c, **Sven Kralisch** ^{c,e}

^a International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal

^b School of Engineering, University of Guelph, Guelph, Canada

^c Department of Geoinformation Science, Friedrich Schiller University Jena, Jena, Germany

^d Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

 $^{\it e}$ Institute of Data Science, German Aerospace Center (DLR), Jena, Germany

Context

- Droughts compromise sustainable development and are considered one of the major social and economic hazards
- Soil moisture droughts are a major concern as they are directly related to agricultural productivity
- The Koshi River Basin faces both floods and droughts due to its unique climatic system
- To better understand the spatio-temporal pattern of drought occurrence in recent years, this study aims at
 - simulating the basin's hydrology and
 - to assess soil moisture drought by means of the Soil Moisture Deficit Index (SMDI)

Study Area

- Koshi River Basin (A ~ 88,000km²)
- Three sub-regions
 - 1. Tibet
 - 2. High and middle mountains
 - 3. Plains

Methods: Hydrological model JAMS/J2000

- spatially distributed (HRUs) process-oriented
- soil water simulation
 - two water storages (large/middle pores)
 - plant water uptake (ET after Penman-Monteith)
 - percolation
- glacier-extension
- lateral routing (HRUs/reaches)

Adapted from Krause (2001) and Nepal *et al.*, (2014)

Methods: Drought Indices

- Soil Moisture Deficit Index (SMDI) (Narasimhan & Srinivasan, 2005)
 - assessment of agricultural droughts
 - characterize variability of soil moisture (Narasimhan and Srinivasan, 2005)
 - calculated based on HRU soil water content in root zone (simulated with JAMS/J2000)
 - weekly temporal resolution, aggregated to seasons
- Standardized Precipitation Index (SPI) (McKee et al., 1993)
 - assessment of meteorological droughts
 - characterize variability of precipitation calculated based on HRU precipitation
 - 3-monthly temporal resolution, aggregated to seasons

Results: Runoff

2002 2003 2004

2005

2006 2007

1996

1997

1998

1999

2000 2001

- Model units:
 - number: 18,557
 - avg. area: 4.7km²
- Good performance at Chatara discharge station

	Calibration (1985–1995)	Validation (1996–2007)
KGE	0.93	0.91
NSE	0.95	0.91
R ²	0.95	0.92
PBIAS	-4.6	6.5

Results: Pot. Evapotranspiration

- Class-A pan PET measurements at Kathmandu, Okhaldhunga, and Jiri in Nepal
- Elevations: 1,300–2,000 m asl
- Validation of simulated PET (Penman-Monteith) showed satisfying results

Station	R ²	PBIAS	Missing values (observed)
Kathmandu	0.56	-0.05%	25%
Jiri	0.84	9.4%	15%
Okhaldhunga	0.71	1.1%	3%

Results: Soil Moisture

- Aggregation of long-term weekly relative soil moisture (MPS) for subregions
- Low average soil water saturation in Tibet suggests high drought vulnerability

Results: Seasonal SMDI

- High spatial coverage of low SMDI in Tibet, followed by Plains, especially during Pre-Monsoon
- Monsoon season with higher SMDI in all regions

Results: Seasonal SPI

- SPI reflects precipitation variability, thus more pronounced (e.g. Tibet/Winter 2006; Plains/Pre-Monsoon 1995)
- SMDI also accounts for temperature and soil water storage (e.g. Tibet/Pre-Monsoon 2001-2007; Plains/Pre-Monsoon 1992)
- Overall more buffered reaction of SMDI on low precipitation periods

Results: Drought Events

- SMDI < -3.0 considered as drought event
- Visualization of spatial coverage and length of drought events reveals severe conditions in Tibet after 2001 (Winter/Pre-Monsoon)
- Monsoon season less impacted in all regions

Conclusions (1)

- The JAMS/J2000 model is suitable for large-scale soil moisture drought assessment in the Koshi River Basin
- Calibrated and validated using multi-site evapotranspiration and discharge data, the model showed good performance, although flood peaks and overall flooding periods have been simulated with a slightly lower accuracy for some years
- Spatio-temporal analysis of low SMDI revealed severe droughts
 - 1992 throughout the Koshi River Basin
 - 1994 and 2004 in Tibet
 - 1999 and 2006 in the High and middle mountains
 - 1994–1996 in the Plains

Conclusions (2)

- Extreme dry conditions increase in frequency in the later years of the study period and are most evident in the premonsoon season
- In Tibet, continuous drought persists after 2000; a similar pattern exists in other regions during winter and premonsoon season
- In all regions, Monsoon is less prone to droughts than other seasons
- SMDI considers precipitation, soil, temperature and landuse and thus can represent soil moisture conditions better than SPI

Outlook

- Further validation of model results, e.g. soil moisture
- Spatio-temporal comparison of identified drought events with observed data
- Uncertainty assessment of simulated SMDI
- Trend analysis of drought occurrence in the Koshi River Basin under Climate Change

References

- McKee, T. B., Doesken, N. J. & Kleist, J. (1993) The relationship of drought frequency and duration to time scale. *Proceedings of the Eighth Conference on Applied Climatology*, 17–22. Anaheim, CA.
- Narasimhan, B. & Srinivasan, R. (2005) Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. *Agricultural and Forest Meteorology* 133(1–4), 69–88. doi:<u>10.1016/j.agrformet.2005.07.012</u>
- Nepal, S., Krause, P., Flügel, W.-A., Fink, M. & Fischer, C. (2014) Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. *Hydrological Processes* **28**(3), 1329–1344.
- Krause, P. (2001) *Das hydrologische Modellsystem J2000. Beschreibung und Anwendung in großen Flußgebieten* (Dissertation). Albert Ludwigs University Freiburg.

Acknowledgements

- Koshi Basin Initiative (KBI) of ICIMOD, supported by the Australia aid program for Sustainable Development Investment Portfolio (SDIP)
- Department of Hydrology and Meteorology (DHM), Government of Nepal

Supplementary Material

Data

Туре	Source		Resolution
Digital Elevation Model (DEM)	ASTER GDEM		30m x 30m
Land use map	Uddin et al. (2016); ICIMOD		30m x 30m
Soil map	SOTER		30m x 30m
Geology map	DMG (1994)		500m x500m
Meteorological data			
a. Precipitation	DHM ^a , IMD ^b , APHRODITE ^c	(160 stations)	Daily
b. Temperature	DHM, IMD, CFSR ^d	(60 stations)	Daily
c. Relative humidity	DHM, IMD, CFSR	(67 stations)	Daily
d. Wind	DHM, IMD, CFSR	(61 stations)	Daily
e. Sunshine duration	DHM	(4 stations)	Daily

Results: SMDI

- Weekly SMDI aggregated for sub-regions
- Weeks with SMDI < -2.0 considered moderate drought (marked red)
- Moderate drought conditions more often in Tibet and Plains

Results: SMDI vs. SPI

Results: SMDI/SPI Base Data

