

Formation of metal & OM-rich microaggregates in meso-density fractions (1.8-2.4 g cm⁻³) assisted by "organo-metallic glue"

Implications for "soil C saturation" (clay only?) and "aggregate hierarchy"

Co-localization of iron and aluminum with organic matter across a range of soils: a density-based approach

Rota Wagai¹, Masako Kajiura¹, & Maki Asano²

 ^{1.} National Agriculture and Food Research Organization Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, JAPAN
^{2.} University of Tsukuba, Faculty of Life & Environmental Sci. JAPAN

Background & Question

Experimental studies revealed mechanisms of OM-metal interactions (adsorption, complexation, and co-precipitation). **But we know little on which mechanisms work at where within bulk soils**

Extractable Fe & Al correlate well with SOM in many soils (but, not in all soils)

- TOC: Tiessen et al. 1984; Skjemstad et al. 1989; Wada, 1995; Kasier & Guggenberger 2000, Percival et al. 2000
- ¹⁴C: Torn et al., 1997; Masiello et al., 2004
- Global significance: Rasmussen et al. 2018; Kramer & Chadwick, 2018; La Londe et al. 2012

→ Potentially useful for SOM modeling

What do these metal phases represent?

- Pyrophosphate (PP)
- Acid Oxalate in Dark (OX)
- Dithionite Citrate (DC or DCB)

ightarrow Metal extraction techniques: not so selective

(Parfitt and Childs, 1988; Rennert, 2019)

→ Important to clarify the nature of the Fe/Al phases & their role in OM stabilization

	рН			
Metal phase	<mark>6-8</mark> DC	7-8 AC	3 OX	10 PP
Monomer (Fe-OM complex)	0	0	0	\odot
Ferrihydrite	\odot	\odot	O	d
Lepidocrocite/Magnetite	0	0	\bigtriangleup	×
Goethite	\odot	×	×	d
Hematite	0	×	×	d
Monomer (Al-OM complex)	0	0	0	Ô
Allophane/imogolite	0	\triangle	\odot	\bigtriangleup
Gibbsite	×	\bigtriangleup	\bigtriangleup	d
Halloysite	×	×	×	×
Kaolinite	×	×	×	×

(Wagai et al. 2013, based on Parfitt & Childs, 1988 and Reyes & Torrent, 1997)

Question 1: where do Fe/Al phases locate within bulk soils?

 \rightarrow which types of organo-metal interaction in what kinds of micro-environment?

Question 2: any general relationship across a wide range of soils?

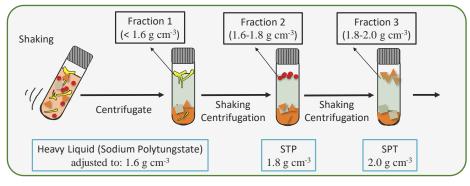
Methods & Results

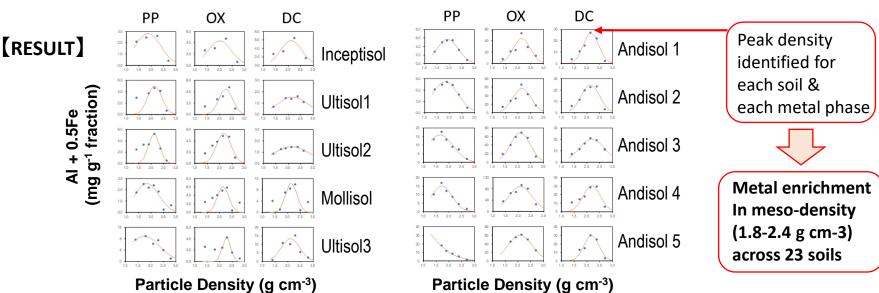
2

© Authors. All rights reserved

23 soil samples of contrasting mineralogy

- A horizons + 2 spodic horizons + 3 buried A horizons
- 5 soil orders
 - Andisols, Spodosols, Inceptisols, Mollisols, Ultisols
- 5 climate zones .
- 3 land use (Cropland, Grassland, & Forest) ٠


Sequential density separation


- into 4 to 7 fractions
- Dispersion by mechanical shaking

Each density fraction extracted by

 $PP \rightarrow OX \rightarrow DC$ reagents

Major findings

Metal concentration

- \rightarrow All extractable Fe & Al phases peaked at 1.8-2.4 g cm⁻³ across the 23 soil samples
- → Peak density of PP-extr. Fe&Al was lower by 0.3-0.4 g cm⁻³ rel. to OX- and DC-extr. phases

• Metal distribution (mass distribution x metal conc.)

- → All metal phases were localized in narrower mesodensity range (ca. 2.1 g cm⁻³), Fig. 1
- → C & other minerals were mainly present in meso density (Fig. 2) → Microaggregate formation (Fig. 3)

• OM characteristics

- → Meso/high density = lower C:N, 13 C, 15 N enriched
- → Significant positive correlation between metal and co-dissolved C in PP (& OX) extracts across soils and <u>among density fractions w/i soil</u>
- Why constant OC:metal in PP (& OX) extracts?
- → Simplest explanation: "organo-metallic unit" (PPextractable phase) act as "glue"
- → "Organo-metallic glue" hypothesis helps to link nanoscale interaction (e.g., Tamrat et al. 2019) with microaggregate formation (e.g., Totsche et al. 2017; Asano et al., 2018) and with physical fractionation results.

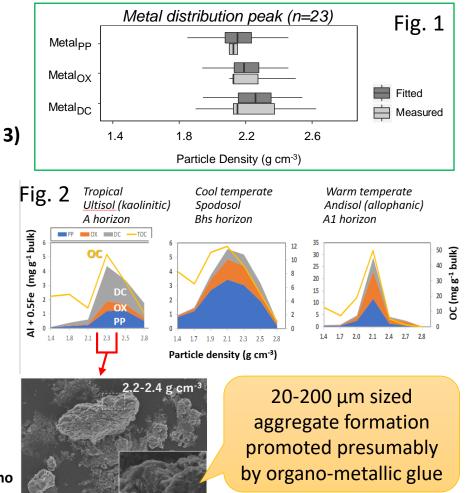


Fig. 3