

........

EGU 2020 Online Conference 4 - 8 May 2020

SEISMOLOGICAL AND ENGINEERING PARAMETERS OF 24 and 26 SEPTEMBER, 2019 MARMARA SEA EARTHQUAKES

Eser ÇAKTI⁽¹⁾, Fatma Sevil MALCIOĞLU⁽²⁾, Hakan Süleyman⁽³⁾

(1) Boğaziçi University, Istanbul, Turkey, e-mail: <u>eser.cakti@boun.edu.tr</u>
 (2) Boğaziçi University, Department of Earthquake Engineering, e-mail: <u>sevil.malcioglu@boun.edu.tr</u>
 (3) Boğaziçi University, Department of Earthquake Engineering, e-mail: <u>hakan.suleyman@boun.edu.tr</u>

On 24th and 26th September 2019, two earthquakes of Mw=4.5 and Mw=5.6 respectively took place in the Marmara Sea. They were associated with the Central Marmara segment of the North Anatolian Fault Zone, which is pinpointed by several investigators as the most likely segment to rupture in the near future giving way to an earthquake larger than M7.0. Both events were felt widely in the region. The Mw=5.6 event, in particular, led to a number of building damages in Istanbul, which were larger than expected in number and severity. There are several strong motion networks in operation in and around Istanbul. We have compiled a data set of recordings obtained at the stations of the Istanbul Earthquake Rapid Response and Early Warning operated by the Department of Earthquake Engineering of Bogazici University and of the National Strong Motion Network operated by AFAD. It consists of 148 three component recordings, in total. 444 records in the data set, after correction, were analyzed to estimate the source parameters of these events, such as corner frequency, source duration, radius and rupture area, average source dislocation and stress drop. **Duration characteristics** of two earthquakes were analyzed first by considering P-wave and S-wave onsets and then, focusing on S-wave and significant durations. PGAs, PGVs and SAs were calculated and compared with three commonly used ground motion prediction models (i.e. Boore et al., 2014; Akkar et al., 2014 and Kale et al., 2015). Finally **frequency dependent Q models** were estimated using the data set and their validity was discussed by comparing with previously developed models.

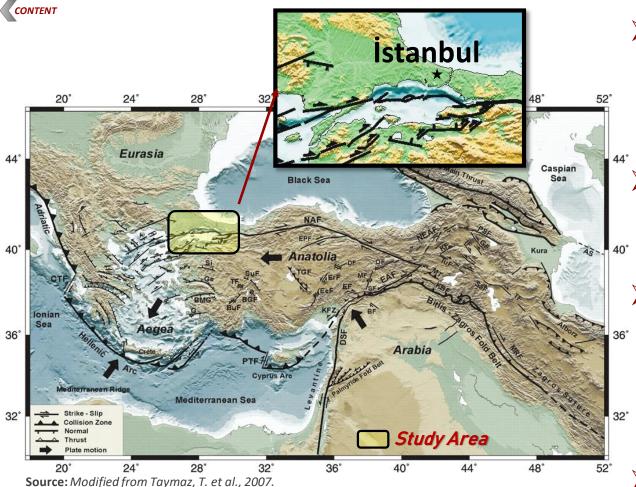
I. OBJECTIVE OF THE STUDY

II. CHARACTERISTICS OF DATABASE

- 1. Earthquake Information
- 2. Data Compilation and Processing

III. ESTIMATED SOURCE CHARACTERISTICS IV. ESTIMATED DURATION PARAMETERS

- 1. Duration of S Waves
- 2. Significant Duration


V. VARIATION OF GROUND MOTION PARAMETERS WITH DISTANCE

- 1. Procedure Scheme
- 2. Variation of Peak Ground Motion Parameters
- 3. Variation of Spectral Accelerations

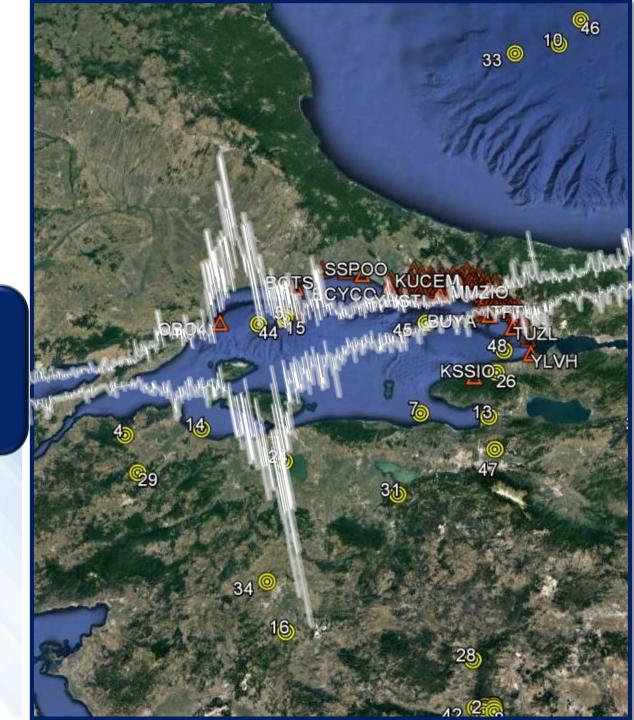
VI. ANELASTIC ATTENUATION PARAMETER VII. CONCLUSION

Summary sketch map of the faulting in the Turkey and direction of plate movements.

© 2020. Eser Çaktı, Fatma Sevil Malcıoğlu and Hakan Süleyman. All Rights Reserved.

 \succ The most seismically and active rapidly deforming regions within the continents, **Expected** destructive EQ with larger a magnitude in the region, largest of the One earthquake hitting the İstanbul province after 1999 EQs (M_w=7.4 & 7.2),

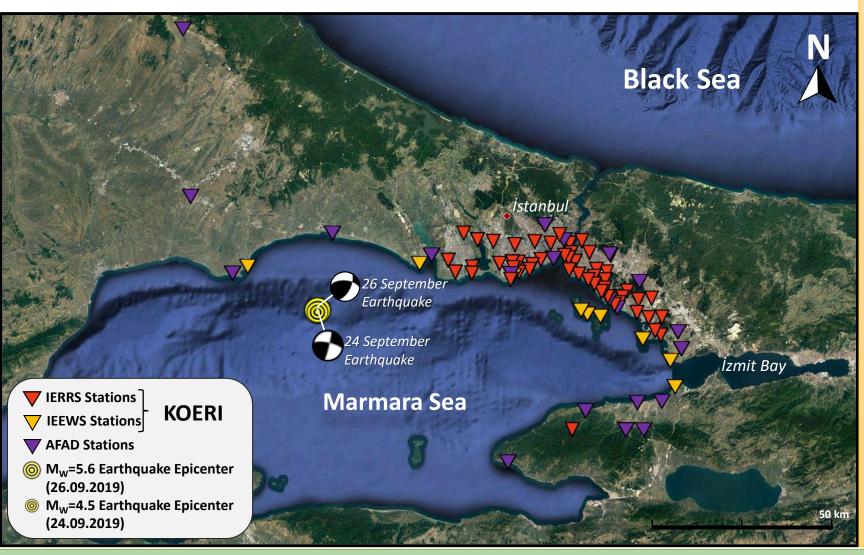
Understanding the potential hazard and risk that a major earthquake may cause in this region better.


These important facts shows the necessity of the detailed study of each earthquake in the region.

4/26

II. CHARACTERISTICS OF THE DATABASE

 Earthquake Information
 Data Compilation and Processing



II. EARTHQUAKE INFORMATION

EARTHQUAKE DATE	24 SEPTEMBER 2019	26 SEPTEMBER 2019		
Moment Magnitude (M _w)	4.5 (KOERI) / 4.6 (AFAD)	5.6 (KOERI) / 5.8 (AFAD)		
Local Magnitude (M _L)	4.7 (KOERI)	5.7 (KOERI)		
Earthquake Depth (km)	9.8 (KOERI) / 5.91 (AFAD)	12.3 (KOERI) / 7.97 (AFAD)		
Focal Mechanism	Strike-Slip Dominant	Thrust Dominant		
Local Time	11:00:21 (KOERI) /11:00:22 (AFAD)	13:59:24 (KOERI) /13:59:25 (AFAD		
Earthquake Location	Off the coast of Silivri (Sea of Marmara)	Off the coast of Silivri (Sea of Marmara)		
Epicenter Coordinate	40.8785 N / 28.2090 E (KOERI) 40.88360 N / 28.216 E (AFAD)	40.8823 N / 28.2095 E (KOERI) 40.8818N / 28.214E (AFAD)		

Data Compilation: 148 three component recordings (444 in total) obtained at the stations of the; Istanbul Earthquake Rapid **Response and Early** Warning operated by the Department of Earthquake Engineering of Bogazici University (IERRS & IEEWS - KOERI), National Strong Motion Network operated by **AFAD**

Data Processing: Acceleration time histories were processed by applying baseline correction and high&low pass filtering by individual visual inspection.

III. ESTIMATED SOURCE CHARACTERISTICS

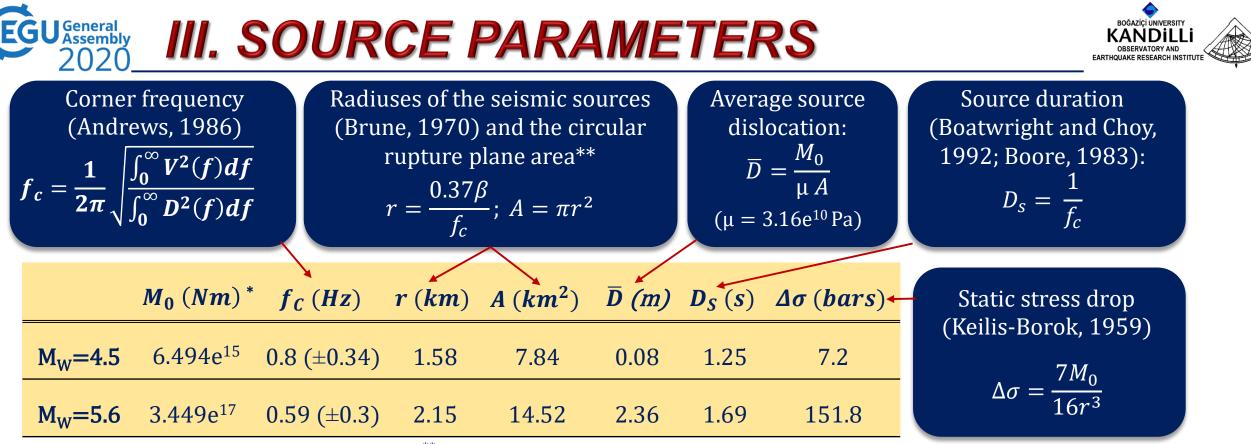
10.3

10-1 Frequency (Hz) (cm/ss)

-0.20

50

100


150

€ -0.40 -0.60 0.03

0.02

150 Time (Sec'

CONTENT

**KOERI-RETMC (2019a & 2019b)* ** β = Crustal shear wave velocity, *(RETMC, personal communication, 2018)*

Rupture areas (A) are calculated also with empirical source scaling relationships developed by Wells and Coppersmith (1994) and Thingbaijam et al. (2017),
 4.27 km² (M_W=4.5) & 31.48 km² (M_W=5.6) Wells and Coppersmith (1994)
 5.66 km² (M_W=4.5) & 7.13 km² (M_W=5.6) Thingbaijam et al. (2017)

- > The average source dislocation relationships of Thingbaijam et al. (2017) yield, 0.03 m (M_W =4.5) & 0.23 m (M_W =5.6)
- The calculated stress drop for the M_W=5.6 event is exceptionally high. Some rare, very high values are also observed in some thrust dominated faults and in shallow earthquakes in the past (Allmann and Shearer, 2009).
 © 2020. Eser Çaktı, Fatma Sevil Malcıoğlu and Hakan Süleyman. All Rights Reserved.

IV. ESTIMATED DURATION PARAMETER'S

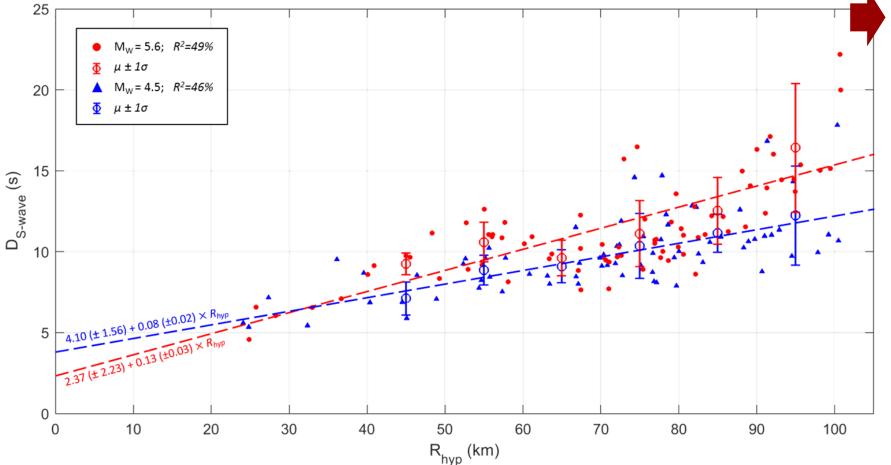
(cm)

₹ ^{0.40} ^{0.60} 0.03

0.02/

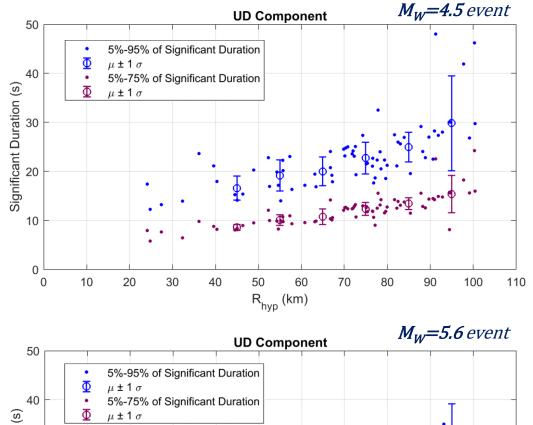
50

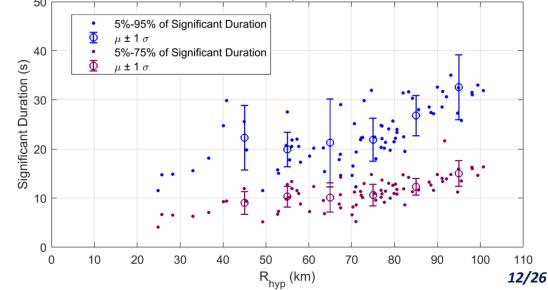
Duration of S-Waves
 Significant Duration


GUGeneral 2020 IV. 1 DURATION OF S- WAVES

Durations of hand-picked S-wave windows are discussed in

terms of their source and path components as,


The path component of S-wave durations is modelled linearly as $0.1 \times R_{hvp}$ for California, in seconds (Kishida et al. 2016). **0.1 in this** expression matches well with the path components of our models, which are 0.08 (±0.02) and 0.13 (±0.03). In Kishida et al. (2016), source durations for events with magnitudes of $M_W \ge 4.5$ that occurred in Greece is suggesting a **10-second** source duration, while our estimations are much smaller.


JGeneral
AssemblyIV. 2 SIGNIFICANT DURATION2020

Significant duration is the b time interval across which a certain amount of energy is dissipated. Arias (1970) used the integral of the square of the ground acceleration to represent energy, known as **Arias Intensity** (I_A),

$I_A = \frac{\pi}{2g} \int_0^T a^2(t) dt$						
	M _W =4.5					
	Significant Duration (5%-75%)			Significant Duration (5%-95%)		
	R ² (%)	а	b	R ² (%)	а	b
NS	25	5.24±2.98	0.03±0.04	42	14.26±4.69	0.06±0.06
EW	16	3.60±2.92	$0.07{\pm}0.04$	20	10.06±4.68	0.14±0.06
UD	60	2.90±1.85	0.13±0.03	41	7.00±4.60	0.22±0.06
	M _W =5.6					
_	Significant Duration (5%-75%)		Significant Duration (5%-95%)			
	R ² (%)	а	b	R ² (%)	а	b
NS	35	3.11±2.75	0.03±0.04	13	8.52±5.23	$0.12{\pm}0.07$
EW	11	1.77±2.94	0.06±0.04	16	6.58±5.86	0.15±0.08
UD	48	2.74±2.08	0.12±0.03	40	6.99±4.85	0.23±0.07

V. VARIATION OF GROUND MOTION PARAMETERS WITH DISTANCE

Procedure Scheme
 Variation of Peak Ground Motion Parameters
 Variation of Spectral Accelerations

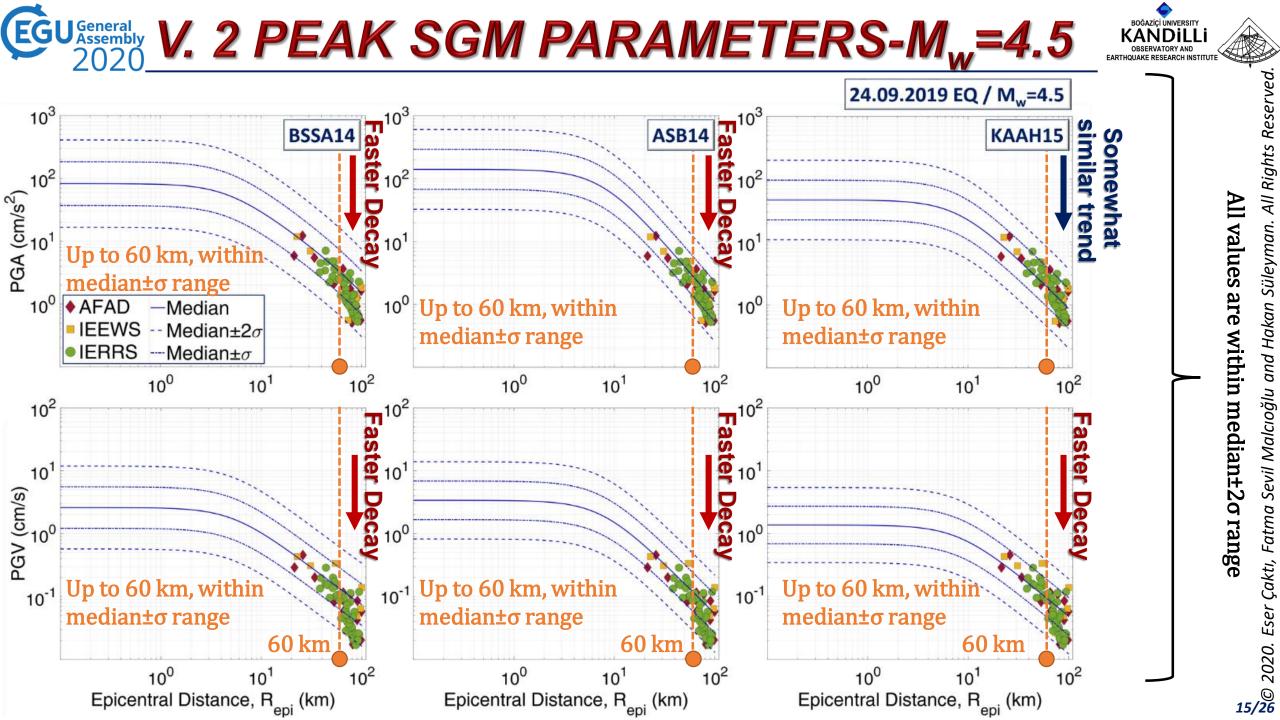
PRELIMINARY PROCESS

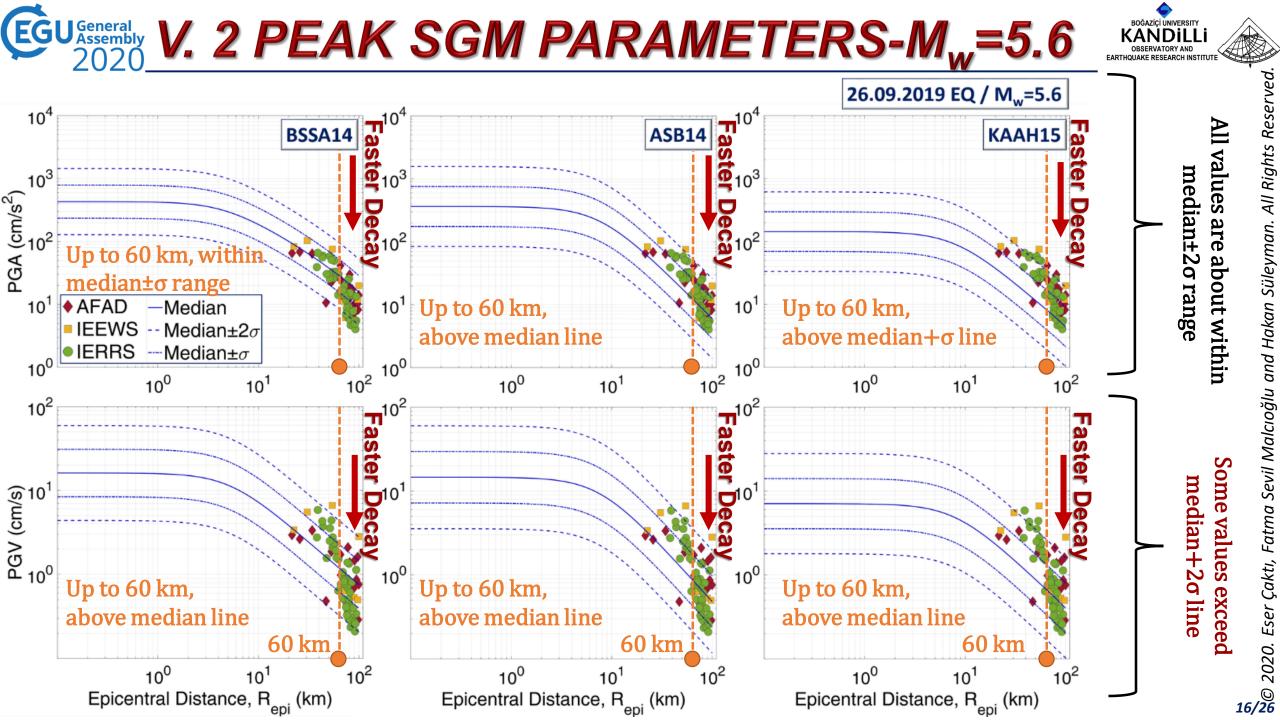
Strong Ground Motion Data Compilation

Processing of Time Histories (EW & NS Records)

NEEDED & ASSUMED PARAMETERS

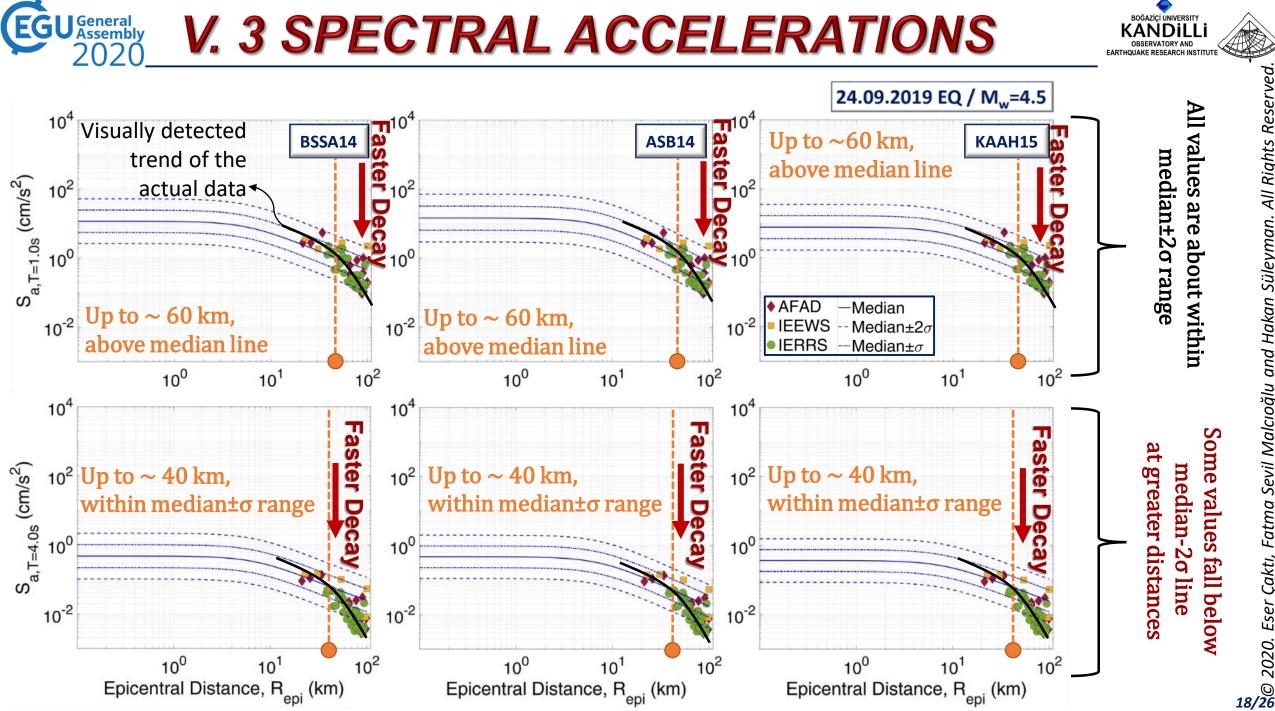
Moment magnitude (M_W): 4.5 and 5.6 by KOERI *Distance (R):* $R_{JB} \approx R_{epi}$ strike-slip for M_W=4.5 *Fault type (SoF):* reverse for M_W=5.6

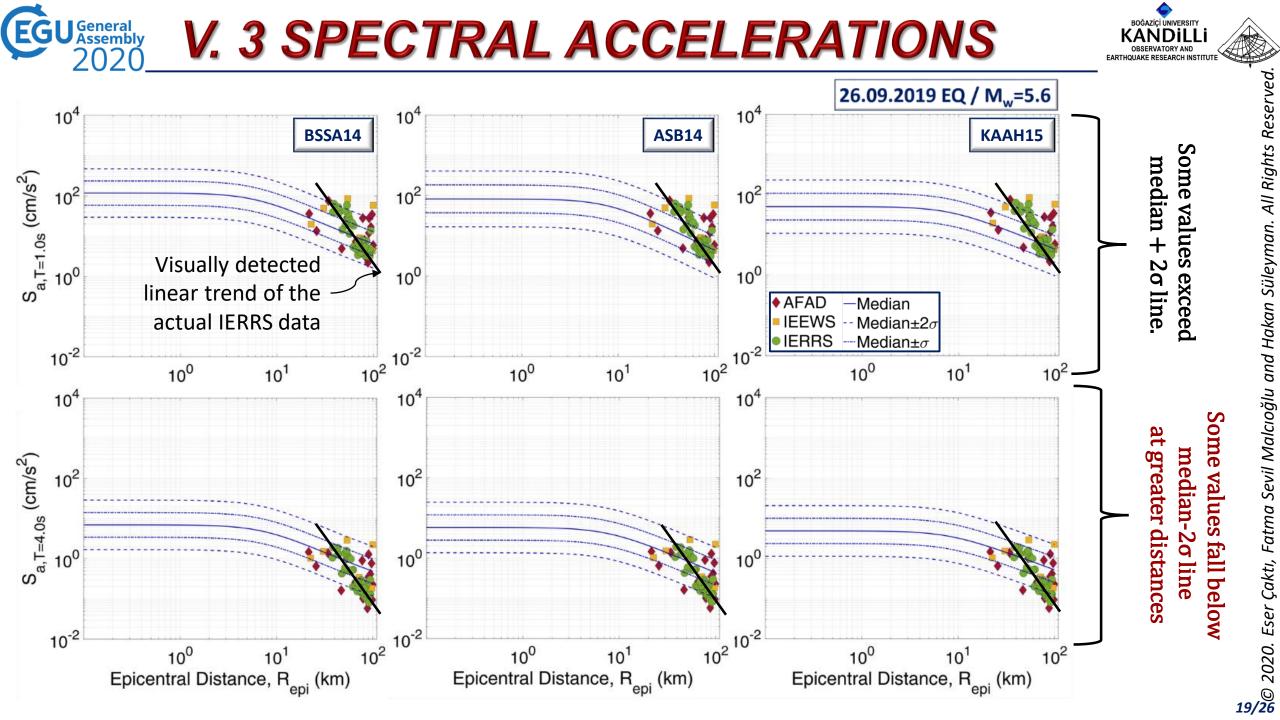

Average shear wave velocity ($V_{s,30}$) ≈ 550 m/sec Region: Turkey in BSSA14 and KAAH15


CALCULATION OF NEEDED PARAMETERS FOR PROCESSED OBSERVED DATA

COMMONLY USED SELECTED GMPEs

Boore et al., 2014 (BSSA14)
 Akkar et al., 2014 (ASB14)
 Kale et al., 2015 (KAAH15)

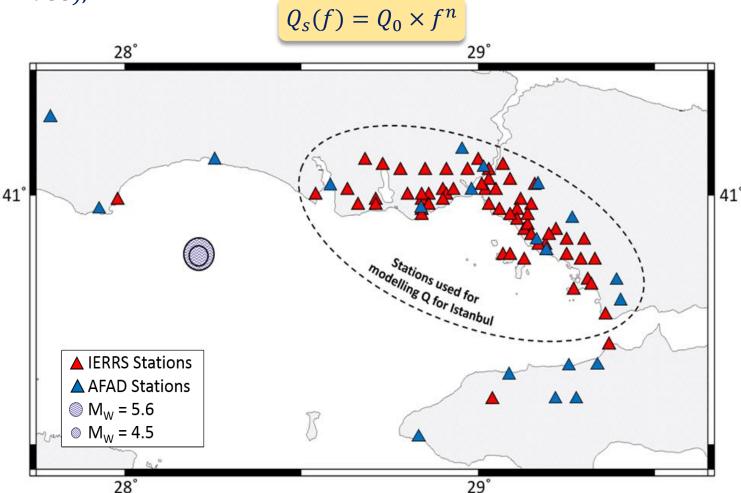




2020_	FOR PGA		FOR <i>PGV</i>	
<i>M_w</i> = 4.5	 Up to 60 km, observed within median±σ rang proper to the emprica A little bit faster attent in the observed PGA v especially above the d around 60 km than in lines. 	and more al GMPEs. uation occurs values istances	Similar to PGA, up to 60 km, observed data are within median $\pm \sigma$ ranges and more proper to the emprical GMPEs. PGVs measured at greater distances than 60 km display a sharp reduction down to median- 2σ line.	seen more sca observed data Earthq
<i>M_w</i> = 5.6	 Up to 60 km, observed above median line and median+2σ line except Faster attenuation occord observed PGA values of above the distances are than in the GMPE line incompatibility with to data. 	d exceed the ot for BSSA14. curs in the especially round 60 km s, resulting in	Up to 60 km, observed data are above median line and some values exceed the median+ 2σ line. However, data are seen more dispersed than PGA. PGVs measured at greater distances than 60 km display a sharp reduction down to median- 2σ line.	a of M _w =4.5 uake.

All Rights Reser Eser Çaktı, Fatma Sevil Malcıoğlu and Hakan Süleyman. 2020.

V. 3 SPECTRAL ACCELERATIONS



	FOR $Sa(T = 1 sec)$	FOR $Sa(T = 4 sec)$
<i>M_w</i> = 4.5	 Up to 60 km, observed data are above median line. A little bit faster attenuation occurs in the Sa values especially above the distances around 60 km than in the GMPE lines. 	 Up to 40 km, observed data are within median±σ ranges. Sa values calculated at greater distances than 40 km display a faster reduction down to median-2σ line.
<i>M_w</i> = 5.6	 Any distance limit could not adapted due to dispersion of data. However, a linear decay was visually detected especcially for IERRS data. Some values exceed median + 2σ line of three GMPEs. 	 Any distance limit could not adapted due to dispersion of data. However, a linear decay was visually detected especcially for IERRS data. Some values fall below median-2σ line of three GMPEs especially at greater distances.

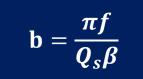
VI. ANELASTIC ATTENUATION PARAMETER

Frequency-dependent anelastic attenuation model, $Q_s(f)$, is prepared by observing the spectral decays at selected central frequencies by using the vertical components of acceleration Fourier amplitude spectra of S-waves (Anderson and Quaas, 1988),

VI. ANELASTIC ATTENUATION PARAMETER

The frequency-dependent $Q_S(f)$ is calculated over the spectral amplitudes of twelve selected central frequencies with wide enough usable frequency bandwidths, between 0.5 Hz - 24 Hz.

The mean amplitudes at selected frequencies are corrected by a geometrical spreading model, $G(R_{hyp})$, expressed in the form of R_{hyp} - γ . We selected the γ exponent as 1, following Frankel et al. (1990) and Horasan and Boztepe-Güney (2004). The correction is applied as,


$$u(R_{hyp}) = \ln\left[\frac{U(f,r)}{G(R_{hyp})}\right]$$

These corrected values are plotted against R_{hyp} and regressed in the $a - b \times R_{hyp}$ form. So that the b value yields the individal Qs values at each selected frequency as,

evil Malcıoğl

2020.

0 /26

VI. ANELASTIC ATTENUATION PARAMETER

	İstanbul		Northeast of Marmara	
Central frequencies (Hz)	M _w =4.5	M _w =5.6	M _w =4.5	M _w =5.6
1	41	39	55	56
1.5	65	61	84	81
2	88	81	109	101
2.5	112	103	135	120
3	141	131	166	136
4	217	201	243	185
6	322	305	329	313
9	414	478	383	508
12	679	850	588	614
15	972	1183	797	697
18	1140	1269	930	949
21	1440	1533	1151	1514
This study	40 f ^{1.15}	31 f ^{1.30}	56 f ^{0.97}	49 f ^{1.04}
This study	401-120	311-00	561	491-01
<i>Horasan et al. (1998) - Sea of</i> <i>Marmara</i>	-		$50 \pm 1.7 \mathrm{f}^{1.09 \pm 0.05}$	
<i>Horasan and Boztepe-Güney (2004) - Sea of Marmara</i>	$ 40 + 5 + 100 \pm 00$		1.03 ± 0.06	
Horasan and Boztepe-Güney (2004) - Istanbul	$13 \pm 1 \text{ f}^{1.22 \pm 0.05}$		-	

- ➤ The individual Q_s values corresponding to each set central frequency is shown in the table, forming the functional frequency-dependent model of $Q_s(f) = Q_0 \times f^n$.
- The Q_s models prepared considering Istanbul has *lower* Q_s values than the Q_s values estimated for the Northeast of Marmara. In other words, shear waves propagating towards Istanbul were encountered by a *higher* attenuation. This is comparable with the model of Horasan and Boztepe-Güney (2004), pointing out on an even higher attenuation.
- Q_s models prepared in the past for the Sea of Marmara are in very good agreement with our models. However, while the models prepared in this study exclusively focuses on the Northeast of our region, the compared models are prepared for the whole region.

Conclusion

VII. CONCLUSION

CONTENT

SOURCE PARAMETERS

The estimated source parameters of M_w=4.5 event are in reasonable agreement with global estimations for moderate magnitude and strike-slip events. However, the stress drop and the average source dislocation of M_w=5.6 event are remarkably high when compared with earthquakes having similar characteristics. Therefore, these values can rarely be observed.

DURATION OF STRONG GROUND MOTION

The path components of significant duration and S-wave duration models have very similar values and they also match with the global models. The 5%-75% significant duration models are very close to the S-wave duration model. In addition to this, the vertical component of the 5%-75% significant duration estimations have a very linear trend along hypocentral distance, yielding $2.90(\pm 1.85) + 0.13(\pm 0.03) \times R_{hyp}$ and $2.74(\pm 2.08) + 0.12(\pm 0.03) \times R_{hyp}$ for M_w=4.5 and M_w=5.6 events, respectively.

VARIATION OF GROUND MOTION PARAMETERS WITH DISTANCE

- The calculated peak parameters (PGA & PGV) and spectral accelerations of the M_w=5.6 earthquake display more dispersed characteristics when compared to those of the smaller event. As a result of that, generally, the data spreads between median±2σ lines of three GMPEs.
- For this data group compiled from both earthquakes, ~60 km may be identifed as a threshold distance since the peak and spectral values begin to attenuate faster at this limit value. However, in order to verify this argument, the database in this study should be extended especially for closer distances.

ANELASTIC ATTENUATION PARAMETER

When the recordings of stations located in Istanbul were examined as a special case, we observed that a very high attenuation exists along the path through which the shear waves travelled towards Istanbul. However, the general model prepared for the northeast of Marmara shows lower attenuation characteristics than the one in the first case.

THANK YOU FOR YOUR KIND ATTENTION

Background Photo: Bosphorous and İstanbul Landscape from Kandilli Observatory

2020. Eser Çaktı, Fatma Sev