

Imaging laboratory rupture nucleation at the source:

A friction experiment using ultrafast ultrasound:

Aichele Johannes^{1,2}; Catheline, Stefan¹; Roux, Philippe²; Latour, Soumaya³

¹LabTAU, INSERM, University of Lyon

²ISTerre, University of Grenoble

²IRAP, University of Toulouse III

Ultrafast Ultrasound Imaging - Imaging Principles

Sonography / Echography

Ultrafast Ultrasound Imaging - Imaging Principles

Sonography / Echography

• Plane waves

- Plane waves
- 10000 FPS

- Plane waves
- 10000 FPS
- Motion tracking

20

-30

0 III -10 -20

Understanding rupture nucleation

- Concentrated on fault zones
- Complex dynamics
- Devastating elastic wave radiation

Understanding rupture nucleation

- Concentrated on fault zones
- Complex dynamics
- Devastating elastic wave radiation

Understanding rupture nucleation

- Concentrated on fault zones
- Complex dynamics
- Devastating elastic wave radiation

Rupture Imaging - Introduction

km-scale

Rupture Imaging - Introduction

km-scale

Latour (2011)

Probe above gel

- Vertical particle velocity retrieved
- Bulk wavefield

Kinematic simulation Green's function Single shear force

Dynamic experiment

Event at 18ms

Near field and shear wave field well reproduced

Rupture propagation

Supershear rupture

• Straight wavefront (Mach cone)

Supershear rupture

- Straight wavefront (Mach cone)
- $\sin \beta = \frac{c_s}{v_r}$

Supershear rupture

- Straight wavefront (Mach cone)
- $\sin \beta = \frac{c_s}{v_r}$
- Constant average angle for all ruptures $\Longrightarrow v_{\text{R}} \approx [17\text{-}20] \mathrm{m} \, \mathrm{s}^{-1} \quad v_{\text{S}} \approx 7 \, \mathrm{m} \, \mathrm{s}^{-1}$

Elastic effects highlighted \rightarrow slip not reproduced

Kinematic simulation Shear force

Source: Gaussian shaped force; Snapshots: Displacement field $(\int_0^t (v_p) dt)$

$$u(t) = \int_0^t (F * G) dt$$
 fits better than $v_p(t) = F * G$

Gaussian shear force misses continuous displacement of source

Kinematic simulation DC

Source: Displacement ramp; Snapshots: Particle velocity field

Qualitative fit better, but wavefield in DC-solution appears more complex

Bimaterial contrast - Precursory event

- well reproduced by single shear force
- does not exhibit radiation pattern of double-couple
 - \Rightarrow We interpret the events either as microslips or grain rearrangements in the sand layer.

Bimaterial contrast - Breaking of asperity

- Double-couple source of a displacement ramp is more appropriate
- The full analytical DC solution shows a wavefield that exposes terms not identifiable in the experiment
- Either those terms are hidden due to limitations of the method or the true source mechanism is not an ideal double-couple.

 \Rightarrow For the natural bimaterial system of glacial sliding, DC moment tensor inversion has been shown to be inaccurate¹. \Rightarrow The softness of the gel in combination with the poly-layer of grains could also lead to off-fault contributions.

Snapshot

- 2D x-z data
- $> 100\,000$ data points

Hydrogel physics **Rock physics** x-Position 3.25 cm0.2Dpl [mm] 0.180.70 0.160.68 Goupe layers 0.66 750850 1000 300 0.64 t [ms] Onset of rapid 200 Normal stress acceleration 100 30 20 10 15 25 Time (s)

Leeman, Marone et al. (2016)

Probe above gel

- Two elastic halfspaces
- Vertical particle velocity

Rupture Imaging - Gel on Gel - Precursory event

3 Snapshots - dt pprox 0.3 ms

Experiment

Point source simulation

Quadripole of a single force reproduced

Rupture Imaging - Gel on Gel - Precursory event

4 Snapshots - dt pprox 0.1 ms

Experiment

DC superposition simulation

Coherent polarization in upper and lower halfspace reproduced

Precursory events

- Single shear force qualitatively reproduces radiation pattern
- Long rise time of 3ms

Rupture events

- Single shear force insufficient for radiation pattern
- DC reproduces coherent polarization in upper and lower halfspace
- Experiment does not show the complete radiation pattern of the analytic DC solution
 ⇒ might be hidden in noise and global movement of the gel blocks ⇒ neither the pure
 double-couple nor the simple shear force might reproduce the gel-on-gel sliding. We
 hypothesize that off-fault terms are likely due to the setup of two soft, not perfectly
 homogeneous gels with a hard grain layer in-between.

Rupture Imaging - Gel on Gel - Sub-shear

Sub-shear rupture

- Right-traveling
- Complex source mechanism

Observed

- Super- and sub-shear rupture
- Precursors
- Reproducible ruptures \rightarrow statistics

Observed

- Super- and sub-shear rupture
- Precursors
- Reproducible ruptures \rightarrow statistics

Work in progress

- Cross-plane acquisition
- $\bullet \ \ \text{Improve detection} \rightarrow \text{statistics}$

©Ugo Nanni

Strong bimaterial contrast
 → Analog to glass-gel

- Strong bimaterial contrast
 → Analog to glass-gel
- Smaller scale than fault

- Strong bimaterial contrast
 → Analog to glass-gel
- Smaller scale than fault
- Recently equipped study site -Dense seismic array

Probe parallel - side view

- Horizontal particle velocity
- Near-field of rupture

25

26

26

