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Flood Response Characterization
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● Characterize flood-generating flow 
responses with respect to:
○ Causating rainfall event:

■ Lag Time
○ Pre-defined discharge 

thresholds:
■ Flood Stage Threshold 

Exceedance (NWS)
● Information for Flash Flood 

Forecasting
● Flashiness relates closely to basin 

morphologyDetailed flow response measures and characteristics

Flashiness
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Precipitation Spatial Variability
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● Rainfall spatial variability influences 
basin response [1,5,6,7,8].

● Spatial rainfall moments:
○ Dimensionless indices
○ Based on precipitation location.
○ Based on flow distance.
➡ Describe the behavior of the storm 

event, relative to the basin.
● Statistical Moments:

○ Mean, Variance, Skewness...
○ Single and cross-moments.

Rainfall Spatial Variability Characterization [5]
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Outlet
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Data Set
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● Variable Selection: Elastic Net [9]
○ Penalized Maximum Likelihood 

Regression
○ Selection such that Error is within 1SE 

of optimum (minimum)

133 
variables

Morphological

Climatological

Streamflow

Precipitation 
Moments*

21,143 
Events

Event
Dataset

31 variables
2 Responses

21,143 
Events

Working
Dataset

POST-PROCESSING

Kirstetter & Saharia ● Data Transformation:
○ Yeo-Johnson Transform

■ Similar to Box-Cox
■ Accepts negatives
■ Accepts zeros

○ Log + Yeo-Johnson
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Some Variable Examples
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Climatological
● Flashiness
● Mean Diurnal Temperature Range
● Mean Temp. of Warmest Quarter
● Isothermality (Mean Diurnal Range / Annual Range)

● Precip. Of Warmest Quarter
● Annual Mean Temperature

Precip. Moments
● Precipitation Mean
● Precip. Std. Deviation
● Precip. Skewness
● Flow Distance Mean
● Flow Dist. Std. 

Deviation
● Flow Dist. Skewness
● Precipitation x Flow Dist. Mean
● Precip. x Flow Dist. Std. Deviation
● Precip. x Flow Dist. Skewness
● Precip. x Flow Dist. Kurtosis

Morphological
● Outlet Slope
● Curve Number
● River Length
● Basin Imperviousness
● Slope Index
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Response Modeling
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● Dataset divided randomly into 75% - 25% training and 
validation subsets:
○ Both subsets showed similar distributions for the data.
○ Preserved representativeness in both subsets.

● Three different approaches:
○ MARS: Multidimensional piecewise linear fits.
○ Support Vector Machines: Kernel-based spatial 

transformations (radial basis function).
○ Random Forest: Randomized, bagged tree ensemble.

● All training subject 10 x 10-fold cross-validation.
● Validation with unseen data v.s. cross-validated training.
● Variable importance analysis performed on models.

MARS

SVM

Random Forests

Images taken from [2, 3, 4]
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Results - Training Times
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MARS Random Forest
Support Vector 

Machines

Lag Time 1.76 hours 8.20 hours 344.13 hours

Flood Stage 
Threshold 

Exceedance
9.5 hours 3.0 hours ~150 hours

○ What are the relationships and trade-offs between ML 
technique, training time and performance?
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MARS Results - Validation
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Lag Time Flood Stage Threshold Exceedance

VALIDATION
"CC 0.64"

TRAINING
"CC 0.66"V.S.

Prediction

Reference

No 
Action

Action Minor Moderate Major

No Action 5 5 0 3 0

Action 13 123 45 35 16

Minor 1 5 21 16 8

Moderate 2 30 86 164 86

Major 0 14 55 238 3258

TRAINING
"ACCURACY 0.85"
"KAPPA 0.5288"

VALIDATION
"ACCURACY 0.84"
“KAPPA 0.58”

V.S.

● Performance remains consistent between 
training and validation, for both responses.

● Class imbalance - favors Major events.
● Sensitive to Action and Major events

(transformed)
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o
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RF Results - Validation
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Lag Time Flood Stage Threshold Exceedance

Prediction

Reference

No 
Action Action Minor Moderate Major

No Action 9 7 0 0 0

Action 12 132 63 33 28

Minor 0 16 56 30 13

Moderate 0 16 65 210 109

Major 0 6 23 183 3218

TRAINING
"ACCURACY 0.94"
"KAPPA 0.83"

VALIDATION
"ACCURACY 0.86"
“KAPPA 0.58”

V.S.
VALIDATION

"CC 0.67"
TRAINING
"CC 0.96"V.S.

● Performance lost between training and 
validation, for both responses.
➡ Even using 10 x 10-fold CV!

● Class imbalance - favors Major events.
● Sensitive to Action and Major events
● Better “understanding” of Moderate events than MARS

(transformed)
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n
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o
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e
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SVM Results - Validation
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Lag Time Flood Stage Threshold Exceedance

VALIDATION
"CC 0.64"

TRAINING
"CC 0.82"V.S.

Prediction

Reference

No 
Action Action Minor Moderate Major

No Action 4 4 0 1 0

Action 5 61 19 11 6

Minor 0 8 27 17 9

Moderate 0 11 35 97 43

Major 12 93 126 330 3310

TRAINING
"ACCURACY 0.98"
"KAPPA 0.95"

VALIDATION
"ACCURACY 0.83"
“KAPPA 0.35”

V.S.

● Performance lost between training and 
validation, for both responses.
➡ Even using 10 x 10-fold CV!

● Class imbalance - favors Major events.
● Sensitive ONLY to Major events

(transformed)

(t
ra

n
sf

o
rm

e
d)

EGU General Assembly 2020 - ITS4.6/NH6.7-D2391, Wed. May 6 
2010

mailto:jduarte@ou.edu


Results - Summary

10 Jorge Duarte – jduarte@ou.edu

MARS Random Forest Support Vector Machines

Lag Time 1.76 hours CC - 0.64 8.20 hours CC - 0.66 344.13 hours CC - 0.64

Flood Stage 
Threshold 

Exceedance
9.5 hours ACC. - 0.84

K - 0.50
3.0 hours ACC. - 0.85

K - 0.57
~150 hours ACC. - 0.82

K - 0.34

● Class imbalance makes it difficult to provide accurate predictions for intermediate flood stage 
thresholds.
➡ Prediction skill for of Major events.

● All models exhibit comparable skill levels.
➡ MARS performs consistently across all data, and requires less training time for Lag Time.
➡ RF overfits training data, but performs comparably.
➡ SVM requires extensive parameter tuning and training times, no drastic performance gains.
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Lag Time - Variable Importance Ranking
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MARS Random Forest Support Vector Machines

Lag 
Time

1. Flashiness
2. Precipitation Mean
3. Precip. X Flow Dist. Mean
4. Diurnal Temp. Range Mean
5. Precipitation. Std. Dev.

1. Flashiness
2. Precip. X Flow Dist. Mean
3. Precip. X Flow Dist. Skewness
4. Precip. X Flow Dist. Std. Dev.
5. Precipitation Mean

1. Precip. X Flow Dist. Mean
2. Precip. X Flow Dist. Std. Dev.
3. Precipitation Mean
4. Precipitation Std. Dev.
5. Flashiness

● Precipitation moments as well as flashiness appear to play a decisive role across all three 
algorithms.
➡ Flashiness as an abstracted measure of morphological and climatological information.

● Models consistently rank Precip. x Flow Dist. Mean, Precipitation Mean and Flashiness as 
significant variables.

● Differences in variable ranking order imply that the choice of ML approach potentially impacts 
the underlying understanding of the processes being modeled.
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Flood Stages - Variable Ranking
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MARS Random Forest Support Vector Machines

Flood Stage 
Threshold 
Exceedance

1. Flashiness
2. Precip. X Flow Dist. 

Mean
3. Outlet Slope
4. Mean Temp. of Warm. Qt.
5. Basin Imperviousness

1. Curve Number
2. Flow Distance Mean
3. River Length
4. Flow Dist. Std. Deviation
5. Annual Mean Temperature

1. River Length
2. Flow Distance Mean
3. Flow Dist. Std. Deviation
4. Slope Index
5. Annual Precipitation

● Both precipitation moments and morphological variables appear to hold relevance in 
performing classification.
➡ Thresholds are directly related to morphology and may be influenced by climatology.

● Climatological variables appear as well, most notably measures of temperature and 
precipitation.

● Differences in variable importance and ranking order imply that the choice of ML approach 
impacts the underlying understanding of modeled processes.
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Conclusions
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● Characterization of floods was achieved by training machine learning models.
○ Data-driven approach for variable selection using Elastic Net.

● Catchment-scale precipitation moments were effectively used to model Lag Time 
and Flood Stage Threshold Exceedance.

● Variable importance showed relevant factors that contribute to characterizing both 
responses:
○ Rainfall moments and flashiness lead the ranking for Lag Time.
○ Aside from moments, there is an intrinsic dependence on morphology and 

climatology for flood stage thresholds.
● MARS was the most consistent performer of all three approaches, and the best at 

predicting Lag Time.
● RF is more efficient at classification, but overfitting affects consistency.
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Thank you!

jduarte@ou.edu 
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