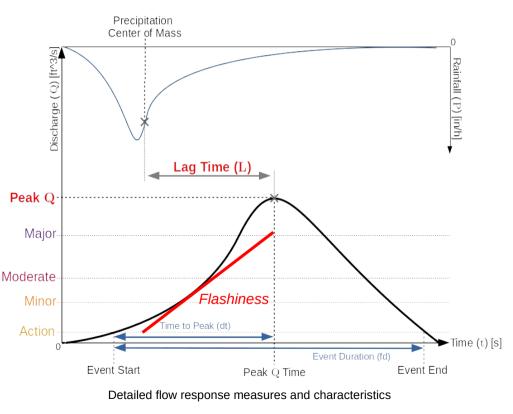


Predicting Flood Responses from Spatial Rainfall Variability and Basin Morphology through Machine Learning

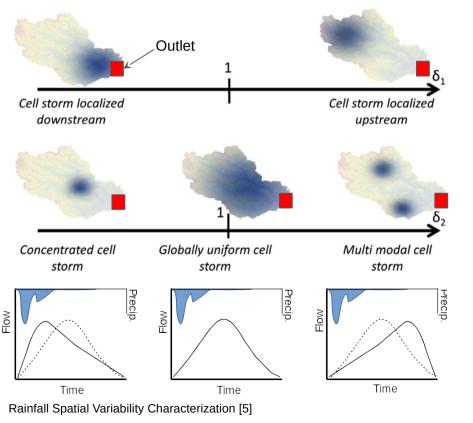
<u>Jorge A. Duarte</u>, Pierre E. Kirstetter, Manabendra Saharia, Jonathan J. Gourley, Humberto Vergara, Charles D. Nicholson

Flood Response Characterization



- Characterize flood-generating flow responses with respect to:
 - Causating rainfall event:
 - Lag Time
 - Pre-defined discharge thresholds:
 - Flood Stage Threshold Exceedance (NWS)
- Information for Flash Flood Forecasting
- Flashiness relates closely to basin morphology
 Jorge Duarte – iduarte@ou.edu

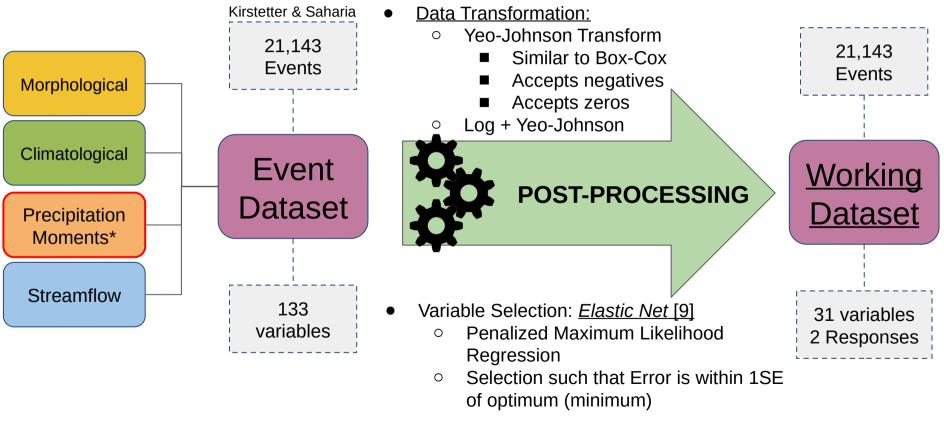
Precipitation Spatial Variability



EGU General Assembly 2020 - ITS4.6/NH6.7-D2391, Wed. May 6

- <u>Rainfall spatial variability influences</u>
 <u>basin response</u> [1,5,6,7,8].
- Spatial rainfall moments:
 - Dimensionless indices
 - Based on precipitation location.
 - Based on flow distance.
 - ➡ Describe the behavior of the storm event, relative to the basin.
- Statistical Moments:
 - Mean, Variance, Skewness...
 - Single and cross-moments.

Data Set



EGU General Assembly 2020 - ITS4.6/NH6.7-D2391, Wed. May 6

Jorge Duarte – jduarte@ou.edu

Some Variable Examples

Climatological

- Flashiness
- Mean Diurnal Temperature Range
- Mean Temp. of Warmest Quarter
- Isothermality (Mean Diurnal Range / Annual Range)
- Precip. Of Warmest Quarter
- Annual Mean Temperature

Morphological

- Outlet Slope
- Curve Number
- River Length
- Basin Imperviousness
- Slope Index

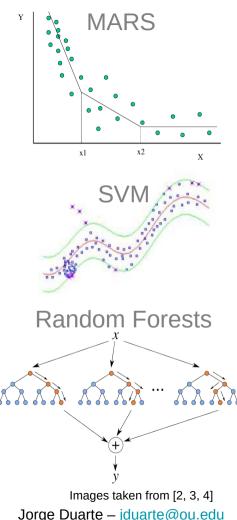
Precip. Moments

Precipitation Mean Precip. Std. Deviation Precip. Skewness • Flow Distance Mean Std. Flow Dist. Deviation Flow Dist. Skewness Precipitation x Flow Dist. Mean Precip. x Flow Dist. Std. Deviation Precip. x Flow Dist. Skewness Precip. x Flow Dist. Kurtosis

Response Modeling

5

- Dataset divided randomly into 75% 25% training and validation subsets:
 - Both subsets showed similar distributions for the data.
 - Preserved representativeness in both subsets.
- Three different approaches:
 - MARS: Multidimensional piecewise linear fits.
 - Support Vector Machines: Kernel-based spatial transformations (radial basis function).
 - Random Forest: Randomized, bagged tree ensemble.
- All training subject <u>10 x 10-fold cross-validation</u>.
- Validation with unseen data **v.s.** cross-validated training.
- Variable importance analysis performed on models.



Results - Training Times

	MARS	Random Forest	Support Vector Machines
Lag Time	1.76 hours	8.20 hours	<u>344.13 hours</u>
Flood Stage Threshold Exceedance	9.5 hours	3.0 hours	<u>~150 hours</u>

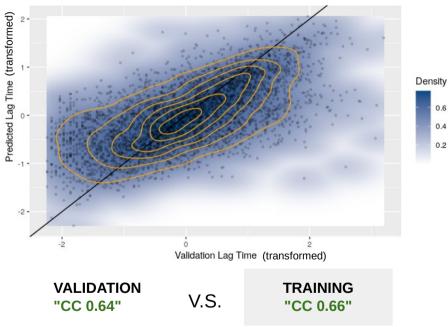
• What are the relationships and trade-offs between ML technique, training time and performance?

MARS Results - Validation **Flood Stage Threshold Exceedance** Lag Time

7

0.6 0.4 0.2

VALIDATION MARS - CC: 0.644



Performance remains consistent between training and validation, for both responses.

EGU General Assembly 2020 - ITS4.6/NH6.7-D2391, Wed. May 6

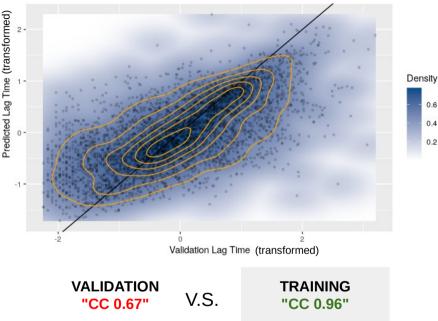
	Reference					
Prediction	No Action	Action	Minor	Moderate	Major	
No Action	5	5	0	3	0	
Action	13	123	45	35	16	
Minor	1	5	21	16	8	
Moderate	2	30	86	164	86	
Major	0	14	55	238	3258	
VALIDATION "ACCURACY 0.84" "KAPPA 0.58"		V.S.	TRAINING V.S. "ACCURACY 0.85" "KAPPA 0.5288"			

- Class imbalance favors Major events.
- Sensitive to Action and Major events

Jorge Duarte – jduarte@ou.edu

RF Results - Validation Lag Time

VALIDATION RANDOM FOREST - CC: 0.665



- Performance lost between training and validation, for both responses.
 - Even using 10 x 10-fold CV!

EGU General Assembly 2020 - ITS4.6/NH6.7-D2391, Wed. May 6

Flood Stage Threshold Exceedance

	Reference				
Prediction	No Action	Action	Minor	Moderate	Major
No Action	9	7	0	0	0
Action	12	132	63	33	28
Minor	0	16	56	30	13
Moderate	0	16	65	210	109
Major	0	6	23	183	3218
VALIDATION "ACCURACY 0.86" "KAPPA 0.58"		V.S.	TRAINING V.S. "ACCURACY 0.94" "KAPPA 0.83"		

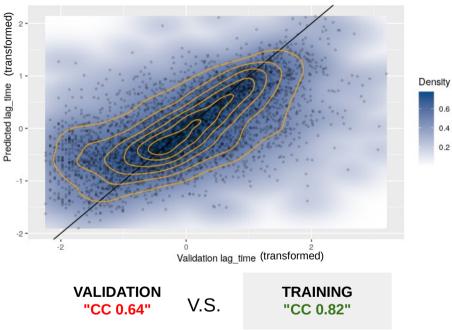
- Class imbalance favors Major events.
- Sensitive to **Action** and **Major** events
- Better "understanding" of **Moderate** events than <u>MARS</u>

8

Jorge Duarte – jduarte@ou.edu

SVM Results - Validation

VALIDATION SVM - CC: 0.64



- Performance lost between training and validation, for both responses.
 - ➡ Even <u>using 10 x 10-fold CV</u>!

EGU General Assembly 2020 - ITS4.6/NH6.7-D2391, Wed. May 6

Flood Stage Threshold Exceedance

	Reference					
Prediction	No Action	Action	Minor	Moderate	Major	
No Action	4	4	0	1	0	
Action	5	61	19	11	6	
Minor	0	8	27	17	9	
Moderate	0	11	35	97	43	
Major	12	93	126	330	3310	
VALIDATION "ACCURACY 0.83" "KAPPA 0.35"		V.S	V.S. TRAINING "ACCURACY 0.98" "KAPPA 0.95"			

- Class imbalance favors **Major** events.
- Sensitive ONLY to Major events

Results - Summary

	MARS		Random Forest		Support Vector Machines	
Lag Time	1.76 hours	CC - 0.64	8.20 hours	CC - 0.66	344.13 hours	CC - 0.64
Flood Stage Threshold Exceedance	9.5 hours	ACC 0.84 K - 0.50	3.0 hours	ACC 0.85 K - 0.57	~150 hours	ACC 0.82 K - 0.34

- Class imbalance makes it difficult to provide accurate predictions for intermediate flood stage thresholds.
 - → Prediction skill for of **Major** events.
- All models exhibit comparable skill levels.
 - → MARS performs consistently across all data, and requires less training time for Lag Time.
 - → RF overfits training data, but performs comparably.
 - → SVM requires extensive parameter tuning and training times, no drastic performance gains.

Lag Time - Variable Importance Ranking

	MARS	Random Forest	Support Vector Machines
Lag Time	 Flashiness Precipitation Mean Precip. X Flow Dist. Mean Diurnal Temp. Range Mean Precipitation. Std. Dev. 	 Flashiness Precip. X Flow Dist. Mean Precip. X Flow Dist. Skewness Precip. X Flow Dist. Std. Dev. Precipitation Mean 	 Precip. X Flow Dist. Mean Precip. X Flow Dist. Std. Dev. Precipitation Mean Precipitation Std. Dev. Flashiness

- Precipitation moments as well as flashiness appear to play a decisive role across all three algorithms.
 - → Flashiness as an abstracted measure of morphological and climatological information.
- Models consistently rank Precip. x Flow Dist. Mean, Precipitation Mean and Flashiness as significant variables.
- Differences in variable ranking order imply that the choice of ML approach potentially impacts the underlying understanding of the processes being modeled.

Flood Stages - Variable Ranking

	MARS	Random Forest	Support Vector Machines
Flood Stage Threshold Exceedance	 Flashiness Precip. X Flow Dist. Mean Outlet Slope Mean Temp. of Warm. Qt. Basin Imperviousness 	 Curve Number Flow Distance Mean River Length Flow Dist. Std. Deviation Annual Mean Temperature 	 River Length Flow Distance Mean Flow Dist. Std. Deviation Slope Index Annual Precipitation

 Both precipitation moments and morphological variables appear to hold relevance in performing classification.

- → Thresholds are directly related to morphology and may be influenced by climatology.
- Climatological variables appear as well, most notably measures of temperature and precipitation.
- Differences in variable importance and ranking order imply that the choice of ML approach impacts the underlying understanding of modeled processes.

Conclusions

- Characterization of floods was achieved by training machine learning models.
 - Data-driven approach for variable selection using Elastic Net.
- Catchment-scale precipitation moments were effectively used to model Lag Time and Flood Stage Threshold Exceedance.
- Variable importance showed relevant factors that contribute to characterizing both responses:
 - Rainfall moments and flashiness lead the ranking for Lag Time.
 - Aside from moments, there is an intrinsic dependence on morphology and climatology for flood stage thresholds.
- MARS was the most consistent performer of all three approaches, and the best at predicting Lag Time.

13

• RF is more efficient at classification, but overfitting affects consistency.

Thank you!

jduarte@ou.edu

Image Sources and References

- I. Emmanuel, H. Andrieu, E. Leblois, N. Janey, and O. Payrastre, "Influence of rainfall spatial variability on rainfall-runoff modelling: Benefit of a simulation approach?," Journal of Hydrology, vol. 531, pp. 337–348, Dec. 2015. doi: 10.1016/j.jhydrol.2015.04.058. https://doi.org/10.1016/j.jhydrol.2015.04.058.
- 2. <u>https://www.researchgate.net/profile/Bernd_Freimut/publication/2455400/figure/fig1/AS:341659566002178@1458469396649/lustrates-a-simple-example-of-how-MARS-would-attempt-to-fit-data-in-a-two-dimension.png</u>
- 3. http://kernelsvm.tripod.com
- 4. <u>https://dsc-spidal.github.io/harp/docs/examples/rf/</u>
- 5. A. Douinot, H. Roux, P.A. Garambois, K. Larnier, D. Labat, and D. Dartus. Accounting for rainfall systematic spatial variability in flash flood forecasting. Journal of Hydrology, 541:359–370, October 2016. doi: 10.1016/j.jhydrol.2015.08.024. https://doi.org/10.1016/j.jhydrol.2015.08.024.
- 6. M. B. Smith, V. I. Koren, Z. Zhang, S. M. Reed, J.-J. Pan, and F. Moreda, "Runoff response to spatial variability in precipitation: an analysis of observed data," Journal of Hydrology, vol. 298, pp. 267–286, Oct. 2004.
- D. Zoccatelli, M. Borga, F. Zanon, B. Antonescu, and G. Stancalie. "Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania". Journal of Hydrology, 394(1-2):148–161, November 2010. doi: 10.1016/j.jhydrol.2010.07.019. https://doi.org/10.1016/j.jhydrol.2010.07.019.
- 8. D. Zoccatelli, M. Borga, A. Viglione, G. B. Chirico, and G. Blöschl. "Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response". Hydrology and Earth System Sciences, 15(12):3767–3783, December 2011. doi: 10.5194/hess-15-3767-2011. https://doi.org/10.5194/hess-15-3767-2011.
- 9. <u>https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html</u>