Have we misunderstood the Shields curve?

Orencio Durán¹ Thomas Pähtz²

¹Department of Ocean Engineering, Texas A&M University

²Institute of Port, Coastal and Offshore Engineering, Zhejiang University

- Fluvial transport thresholds compiled in the Shields diagram are neither entrainment nor disentrainment thresholds
- Shields curve shows a "rebound threshold" associated with the kinetic energy balance of transported particles
- Conceptually simple rebound threshold model unifying viscous and turbulent aeolian and fluvial transport conditions
- Transport capacity requires exceeding the impact entrainment threshold, which is strictly larger than the rebound threshold

- Introduction
- 2 Rebound threshold model
- Experimental and numerical validation
- Implications for capacity transport
- Summary

Environmental parameters:

- Particle density ρ_n [kg/m³]
- Particle diameter d [m]
- Fluid density ρ_f [kg/m³]
- Kinematic fluid viscosity ν_f [m²/s]
- Fluid shear stress τ [N/m²]
- Sediment transport rate Q [kg/(m.s)]
- Gravitational constant $g [m/s^2]$

Dimensionless numbers:

Density ratio: $s \equiv \rho_n / \rho_f$ Galileo number: Ga $\equiv d \sqrt{(s-1)gd} / \nu_f$ $\Theta \equiv \tau / [(\rho_{\rm D} - \rho_f)gd]$ Shields number: Re. $\equiv Ga\sqrt{\Theta}$ Shear Reynolds number: $Q_* \equiv Q / \left| \rho_p d \sqrt{(s-1)gd} \right|$ Dimensionless transport rate: 4/14

Orencio Durán . Thomas Pähtz

Have we misunderstood the Shields curve?

Introduction

Two methods for measuring fluvial transport thresholds:

- **(**) Visual: Θ_t is value of Θ at measured critical transport rate Q_*
- **2** Reference: Θ_t from extrapolating $Q_*(\Theta)$ to small or zero Q_*

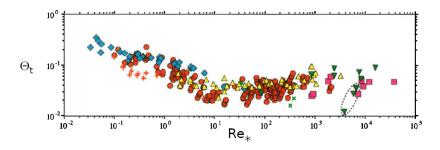


Figure: Shields diagram after Buffington & Mongomery¹: reference thresholds (triangles) and visually measured thresholds (other symbols).

Introduction (visual method)

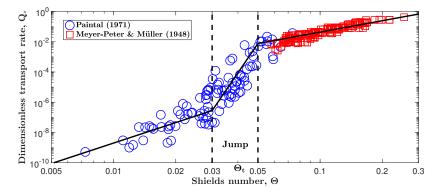


Figure: Measurements¹ of $Q_*(\Theta)$. Notice the jump of Q_* around $\Theta_t \approx 0.04$. Also, notice that $Q_* > 0$ even at $\Theta \approx 0.007 \ll \Theta_t$.

References (click to open):

(1) Paintal (JHR, 1971); Meyer-Peter & Müller (TU Delft, 1948) after Wong & Parker (JHE, 2006)

Introduction (visual method)

- The visually measured threshold is usually interpreted as a measure for flow-driven entrainment of bed sediment¹.
- O However, flow-driven entrainment is mainly driven by extreme flow events, associated with very-large-scale motions².
- Intrainment events occur even for Shields numbers nearly an order of magnitude below the Shields curve³.
- When turbulence is suppressed, almost all entrainment events are driven by impacts of transported particles onto the bed⁴.

Conclusion:

The visual threshold does not describe flow-driven entrainment.

References (click to open): (1) Dey & Ali (Sedimentology, 2019) (2) Valyrakis et al. (WRR, 2011); Cameron et al. (JFM, 2020) (3) Paintal (JHR, 1971) (4) Heyman et al. (JGR, 2016); Pähtz & Durán (PRF, 2017); Lee & Jerolmack (ESD, 2018) 7/14

Introduction (reference method)

General transport rate relation of previous presentation: $(\kappa, \mu_b, c_M) = (0.4, 0.63, 1.7)$

$$Q_* = \frac{2\sqrt{\Theta_t}}{\kappa\mu_b} (\Theta - \Theta_t) \left[1 + \frac{c_M}{\mu_b} (\Theta - \Theta_t) \right] \quad \text{if} \quad \frac{\Theta}{\Theta_t} \gtrsim 1.5 - 2 \quad (1)$$

- According to Shields¹, extrapolating paired measurements of
 Θ and Q_{*} to Q_{*} = 0 yields the reference threshold.
- **2** Hence, Θ_t in Eq. (1) is the reference threshold.
- Because of the validity of Eq. (1) across aeolian and fluvial conditions, Θ_t should have a universal physical meaning.
- Assuming reference threshold = visual threshold, this universal physical meaning should be consistent with a jump of Q_{*} around Θ_t (see slide #6).

What is the physical meaning of Θ_t and the Shields curve?

References (click to open):

- (1) Shields (Caltech, 1936)
- (2) Dey & Ali (Sedimentology, 2019)

Thought experiment:

- Particle hop in nonfluctuating wall-bounded flow
- $E_{\uparrow(\downarrow)} =$ kinetic energy immediately after (before) a rebound
- $\theta_{\uparrow(\downarrow)} =$ rebound (impact) angle; $E_o \equiv E_{\uparrow}(t=0)$
- Mean rebound laws from experiments: $(E_{\uparrow}/E_{\downarrow}, \theta_{\uparrow}) = f(\theta_{\downarrow})$

Flow

Findings:

- For sustained motion, a critical energy E_c must be exceeded:
- If $E_o \ge E_c(\Theta, \operatorname{Ga}, s)$, a periodic trajectory is approached.
- If $E_o < E_c(\Theta, Ga, s)$, no motion is approached.

E

• For $\Theta < \Theta_t^{\text{Rb}}(\text{Ga}, s)$, only trivial solutions exist $(E_c = \infty)$.

Hypothesis: Shields curve threshold $\Theta_t = \Theta_t^{Rb}$.

Thought experiment:

- Particle hop in nonfluctuating wall-bounded flow
- $E_{\uparrow(\downarrow)} =$ kinetic energy immediately after (before) a rebound
- $\theta_{\uparrow(\downarrow)} =$ rebound (impact) angle; $E_o \equiv E_{\uparrow}(t=0)$
- Mean rebound laws from experiments: $(E_{\uparrow}/E_{\downarrow}, \theta_{\uparrow}) = f(\theta_{\downarrow})$

Findings:

- For sustained motion, a critical energy E_c must be exceeded:
- If $E_o \ge E_c(\Theta, \operatorname{Ga}, s)$, a periodic trajectory is approached.
- If $E_o < E_c(\Theta, Ga, s)$, no motion is approached.
- For $\Theta < \Theta_t^{\text{Rb}}(\text{Ga}, s)$, only trivial solutions exist $(E_c = \infty)$.

Hypothesis: Shields curve threshold $\Theta_t = \Theta_t^{Rb}$.

Rebound threshold model

Hypothesis explains jump of Q_* around Θ_t :

• Particles entrained by turbulent events are, on average, suddenly able to stay much longer in motion.

Outline of mathematical model¹ for rebound threshold Θ_t^{Rb} :

- Solutions Θ(Ga, s, E_↑) (various analytical solutions exist^{1,2}).
- Only consider particle trajectories with a rebound energy that exceeds the potential barrier energy E_b set by the pockets of the bed surface: E_↑ ≥ E_b.
- Consider that E_b is weakened by the near-surface flow. In particular, E_b vanishes when Θ exceeds Θ^{max}_t, the yield stress that imposes an upper limit on the Shields curve.
- Obtain the rebound threshold from the trajectory for which Θ is minimal: Θ^{Rb}_t = min_{E↑} Θ[Ga, s, E↑ ≥ E_b(Θ)].

References (click to open):

(1) Pähtz et al. (RoG, 2020); Pähtz et al. (submitted, 2020)

(2) Jenkins & Valance (POF, 2014); Berzi et al. (JFM, 2016); Berzi et al. (JGR: ES, 2017)

Experimental and numerical validation

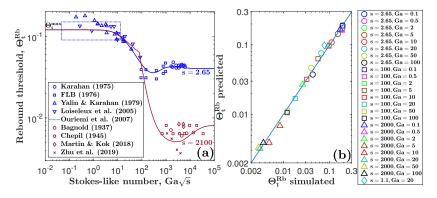


Figure: Rebound threshold model against (a) measurements¹⁻³ and (b) DEM-based sediment transport simulations. All model parameters in (a) have been obtained from experiments (not from fitting to threshold data).

References (click to open):

- (1) Karahan (TU Istanbul, 1975); Fernandez Luque & van Beek (JHR, 1976); Yalin & Karahan (JHD, 1979);
- (2) Loiseleux et al. (POF, 2005); Ouriemi et al. (POF, 2007)
- (3) Bagnold (TGJ, 1937); Chepil (Soil Science, 1945); Martin & Kok (JGR: ES, 2018); Zhu et al. (JGR: ES, 2019)

11/14

Implications for capacity transport

Dimensionless average rebound threshold particle velocity $\overline{v_{x}}_{*t}^{Rb}$:

- The minimization of Θ , used to obtain Θ_t^{Rb} , also yields $\overline{v_{x*t}}^{\text{Rb}}$.
- 2 In particular, for transport in log-layer¹, $\overline{v_{x*t}} \approx 2\kappa^{-1}\sqrt{\Theta_t^{\text{Rb}}}$.

New understanding of capacity transport²:

- Increasing transport load *M* leads to weakening of the flow via momentum transfer from the flow to transported particles.
- Capacity transport is the weakest flow state (largest *M*) that allows for a sustained average rebound motion of transported particles (analogous to rebound threshold conceptualization).
- This transport capacity definition leads to $M_* = \frac{1}{\mu_b} (\Theta \Theta_t^{\text{Rb}})$.
- To keep M at capacity, a continuous supply of bed particles via impact entrainment is required (see next slide).

These expressions for $\overline{v_{x*t}}^{\text{Rb}}$ and M_* were used to derive the general transport rate relationship presented in the previous presentation.

References (click to open):

(1) Pähtz & Durán (JGR: ES, 2018)

(2) Pähtz & Durán (PRF, 2018); Pähtz et al. (RoG, 2020)

Orencio Durán , Thomas Pähtz

- In Randomness in natural systems causes deposition.
- Fluid entrainment, which occurs only in intermittent turbulent events, is unable to continuously balance this deposition¹.
- Hence, entrainment by particle-bed impacts is required to continuously balance this deposition and sustain capacity¹.
- O However, we find that, in the limit ⊖ → ⊖_t^{Rb}, the lift-off energy of particles entrained by impacts is necessarily smaller than the critical energy E_c required for sustained motion².
- Θ Hence, the impact entrainment threshold Θ^{ImE}_t, defined as the Shields number above which impact entrainment is able to balance deposition and sustain capacity, is larger than Θ^{Rb}_t.
- A literature review¹ suggests $\Theta_t^{\text{ImE}} \approx (1.5-2)\Theta_t^{\text{Rb}}$.

References (click to open):

(1) Pähtz et al. (RoG, 2020)

(2) Pähtz et al. (submitted, 2020)

Summary

Summary of both presentations:

$$Q_* = \frac{2\sqrt{\Theta_t^{\mathrm{Rb}}}}{\kappa\mu_b} (\Theta - \Theta_t^{\mathrm{Rb}}) \left[1 + \frac{c_M}{\mu_b} (\Theta - \Theta_t^{\mathrm{Rb}}) \right] \quad \text{if} \quad \Theta \geq \Theta_t^{\mathrm{ImE}}$$

 Θ_t^{Rb} can be predicted from rebound threshold model.

 A model for Θ_t^{ImE} is currently missing, but it seems that
 Θ_t^{ImE} ≈ (1.5-2)Θ_t^{Rb}.

References regarding results in both presentations (click to open):

Pähtz & Durán (Physical Review Fluids 2, 074303, 2017) Pähtz & Durán (Journal of Geophysical Research: Earth Surface 123, 1638–1666, 2018) Pähtz & Durán (Physical Review Fluids 3, 104302, 2018) Pähtz & Durán (Reviews of Geophysics 58, e2019RG000679, 2020) Pähtz & Durán (Physical Review Letters 124, 168001, 2020) Pähtz et al. (submitted, 2020)

14/14