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The goal of this project is to reduce uncertainties in the evolution of O, levels over Earth history, using a 1-D photochemical model and triple oxygen isotope data.

1. The photochemical model, Atmos 2. Modelling of oxygen levels suggests two stable states
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3. Incorporating triple oxygen isotopes into Atmos in order to predict A0

, , ii) Developing Atmos
i) Background to atmospheric A0 We have incorporated the three isotopes of oxygen in order to predict A0 profiles of
In the formation of stratospheric ozone: atmospheric species and A0 values of species reaching the Earth’s surface through wet
/ %) and dry deposition.
Due to mass balance, O, has a iii) Model validation and calibration...
O; gains a large, positive A'’O small, negative A /0O value, ... involves comparison with existing data (e.g. [11, 12, 13]),
value... dependent on pCO,, pO,, and existing model results (e.g. [14, 15]), and recently-collected salt
primary productivity... concentration and oxygen isotope data from Atacama nitrates
l and sulphates. , ,
‘ Fig. 4: Collecting samples from the Atacama
Desert, Chile (Dec 2017). Credit: A. Zerkle.
... which is propagated to O('D), ..which can be incorporated into
CO,, NO,, SO,%, and H,0, via stable sulphate and preserved in iv) Research in progress
chemical reactions (e.g. [10]). the geological record. Q What is the minimum pO, required for a non-zero A0 to be measurable in geological
record sulphates?
Q What kind of A'0O,, values might be expected for the high-O, and trace-O,
(where A0 = 670 - 0.528 6'°0) atmospheres from the flux-driven modelling results presented above (Figure 3)?

SUMMARY: We are developing an oxygen isotope model to predict A0 in different species under different
conditions, in order to explore our hypothesis of two stable states for oxygen concentrations.
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