Source-process Partitioning of Soil N₂O and CO₂ Production: Nitrogen and Simulated Exudate Additions

Erin Daly¹ and Guillermo Hernandez Ramirez¹ ¹Department of Renewable Resources University of Alberta, Canada Presenting author email: edaly@ualberta.ca

Background

- Greenhouse gas emissions from agriculture account for 12% of total anthropogenic emissions globally¹
- 60% of anthropogenic N₂O comes from agricultural soil².
- Soil organic matter can be primed by plant root exudates or nitrogen fertilizer, altering N₂O and CO₂ emissions.
- Understanding source partitioning of CO₂ & N₂O emissions \geq from soil is integral for quantification of SOM priming.
- ≻ Process partitioning of N₂O fluxes can lead to better mitigation strategies.

Study Objective

To quantify and partition N₂O and CO₂ sources and N₂O processes to understand how simulated root exudate and nitrogen fertilizer interplay to induce SOM priming effects.

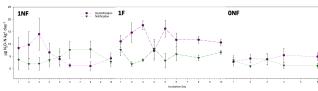
Materials and Methods

- Upper 15 cm of soil collected from continuous barley rotation in Breton, Alberta.
- Soil properties: Texture: silty loam, C/N: 11, Available N: 8.7 mg N kg⁻¹, DOC: 11.95 g C kg⁻¹.
- \triangleright Lab incubation experimental design: RCBD with 10 treatments, 4 replicates.
- Artificial root exudate: 60% glucose, 40% malonic acid labelled with 99 atom % ¹³C. Applied at 0, 6.2 or 12.5 mg C kg-1 soil day-1
- Nitrogen fertilizer: Urea labelled with 5 atom% ¹⁵N. Applied \triangleright at 0 or 53 mg N kg⁻¹ soil.
- Flux measurements: non steady state, automated chambers, Picarro cavity ring down spectroscope & Aerodyne quantum cascade laser spectroscope.

Experimental Setup

Results

1000


800

¹⁰ 600

₩ 400

200

- Source priming determined by Derived from added urea Derived from soil N difference in soil N-derived N₂O between the control (0NF) and treatments. > Significant positive priming in 0F
 - treatment (no exudate, with fertilizer). Addition of root exudate (0.5F &
 - 1F treatments) reduced positive primina.

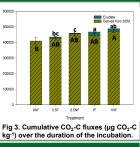

- Fig 2. Average daily emissions (µg N2O-N kg⁻¹ day⁻¹) partitioned into source processes, i.e., nitrification and denitrification
- Denitrification was dominant in all treatments during first 4 days. \triangleright ۶ During incubation days 5 to 10, denitrification was positively primed in the 1F treatment and negatively primed in the 1NF treatment.
- > Nitrification was positively primed in the 1F treatment.

Fig 1. Cumulative N₂O emissions (µg N₂O-N kg⁻¹

soil) for select treatments separated by source

Results (con't)

- Source priming determined by difference in soil C-derived CO₂.
- Labile carbon additions as exudate induced positive priming relative to the control.
- Addition of labile nitrogen reduced positive SOM priming relative to unfertilized counterparts.

Conclusions

- No single mechanism can explain the different patterns of priming of SOM in response to exogenous inputs of exudate (labile C) and nitrogen. Multiple priming mechanisms may be occurring simultaneously.
- Addition of nitrogen fertilizer increased the fluxes of N₂O and positive SOM-N priming to produce N₂O, both of which were reduced when labile C was applied.
- Nitrogen and carbon additions altered the magnitude and proportion of N₂O formed via nitrification and denitrification.
- Addition of labile carbon increased CO₂ fluxes and SOM priming to generate CO₂, but addition of nitrogen fertilizer reduced both when applied concurrently.

Acknowledgments

Agriculture

Agriculture and

Agri-Food Canada

Alberta and Forestry

Bibliography

Frank Stefan et al "Reducing or Letters 12.10 (2017): 105004 Vang, Olhul, et al. "Data-driven estimates of global nitrous oxide emissions from croplands." National Science Review 7.2 (2020): 441-452