

AGH University of Science and Technology Kraków, Poland

Radioactivity in the gas pipeline network in Poland

P. Jodłowski¹, J. Macuda², J. Nowak¹

¹ Faculty of Physics and Applied Computer Science
² Faculty of Drilling, Oil and Gas

NORM in gas industry

The main sources of radiation in gas industry:

- Rn-222 in transported gas
- short-lived Rn-222 progeny (Po-218 Pb-214) accumulated:
 - on inner pipe surface (thin film -> scales)
 - on filters ("black powder")
- Po-218 Pb-214 decay after a few hours
- Finally, the long-lived Pb-210 is produced from Rn-222 progeny

Radiological risk

- External exposure
- Radioactive contamination (external/internal)

Methods of measurement

Measurements of Rn-222 in NG

Lucas ZnS(Ag) scintillation cells 270 ccm
 + PYLON AB5

Measurements of Pb-210 in black powder

- gamma-ray spectrometry
- HPGe detector (efficiency 40%),
- Pb shield

Results - Rn-222

Content of Rn-222 - weekly average

-	Imported gas (mainly from Russia) long transport		
	time - 5 sites	52 – 8	0 Bq/m^3
-	gas from local gas mine		
	(measurement soon after extraction)	1370	Bq/m³
-	a blend of the national gas (ca 30%)		
	with imported one	370	Bq/m³
-	the air of dwellings in Poland	ca 100	Bq/m³
	(for comparative purposes)		

Rn-222 variability

Temporal variability of Rn-222 concentration was measured on daily and weekly time scales.

No significant temporal variability of 222Rn on those time scales could be detected.

Results – black powder from gas filters

- The Pb-210 activity concentration for the black powder sample (5 sites) 500 - 17 000 Bq/kg

- The highest Pb-210 activity concentration for the sample from metering station, where content of Rn-222 in gas is the highest (370 Bq/m³)
- At the moment of stopping the gas flow through the filter, the dust contains significant amount of short-lived Rn-222 daughters, but their activities decrease rapidly (100 times over 3,5 hours)

Conclusion

- The source of radiological hazard in Polish natural gas network is Rn-222 and its daughters.
- Rn-222 concentration depends on the gas origin (imported local).
- Daily and weekly variability of the Rn-222 concentration in gas has not been found.
- Pb-210 concentration in black powder from filters reaches significant values.
- Potential risk comes from internal exposure as a result of inhalation of powder from filters containing Pb-210.

References

J. Nowak, **P. Jodłowski**, J. Macuda, Radioactivity of the gas pipeline network in Poland, J. Environmental Radioactivity, **213** (2020) 106143