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Moving from single-layer to multi-layer snow scheme in the ECMWF IFS model

Single-layer (currently operational)

Lowest atmospheric modd leve

(a) ra ¢ exposed snow forest snow la
Rs (1_ qsf)Ksl-s HiEi
3 T,
(1- as)Ks Ls Hs Es Rs | t B
) Tk I t ‘
[ sk,5 lsk,7
Tsn, Psn; Sen dsh = 1.0
1Cs Re
¥ ¥
ToWeol Tro dso
Other soil levels z (m)

Snow Multi-Layer (ML) also includes additional

snow physics parametrizations:
» Prognostic liquid water content

» Shortwave radiation penetration and absorption

* New effective thermal conductivity

» Wind-induced densification of top snow layers

Multi-layer (targeted operational in cycle 48r1)

Lowest atmospheric mode level
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Multi-layer and single-layer schemes share the same

« Snow cover parametrization
« Snow albedo parametrizations:

* Douville 95 for snow on low vegetation
» Look-up table for snow under high vegetation
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Evaluation of the new snow scheme in land-surface only (offline)
experiments, forced both using observations
(point simulations) and reanalysis data (global simulations)

Z>, - . .
Arduini et al. (2019), Journal of Advances in Modeling
Earth Systems, 11, 4687-4710.
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ESM-SnowMIP dataset for snow processes evaluation and testing
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Average wintertime near-surface temperature vs
annual snowfall for the ESM-SnowMIP sites

ESM-SnowMIP:

Nine snow supersites with observations of meteorological fields
required to run land-surface models.

At least 7 years (some sites more than 15 years) of
observations for forcing and evaluation.

Quick: less than 15 min to simulate more than 100 years

See Krinner et al., 2018 and Ménard et al., 2019 for more

information
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Site Latitude Longitude Elevation Period Type
BERMS’ Old Aspen, Canada 1997- Boreal
53.63°N 106.20°W 600 m
(oas) 2010
BERMS Old Black Spruce, 1997- Boreal
53.99°N 105.12°W 629 m
Canada (obs) 2010
BERMS OIld Jack Pine, 1997- Boreal
. 53.92°N 104.69°W 579 m
Canada (ojp) 2010
1994- Alpine
Col de Porte, France (cdp) 4530°N 5.7TE 1325m
2014
Reynolds Mountain  East, 1988- Alpine
43.06°N 116.75°W 2060 m
USA (rme) 2008
2005- Maritime
Sapporo, Japan (sap) 43.08°N 141.34°E 15m 2015
2005- Alpine
Senator Beck, USA (snb) 3791°N 107.73°W 3714 m 2015
. 2007- Arctic
Sodankyld, Finland (sod) 6737°N 26.63°E 179 m
2014
2005- Alpine
Swamp Angel, USA (swa) 3791°N 107.71°W 337l m 2015
Weissfluhjoch,  Switzerland 1996- Alpine
46.83°N 9.81°E 2540 m
(wij) 2016

Extracted from Krinner et al. 2018

Two configurations of the multi-layer
snow scheme are tested in the offline
simulations at the ESM-SnowMIP sites:

1. ML-Std: the main differences with the
single-layer scheme (SL) are the
enhanced vertical discretization and
prognostic liquid water;

2. ML-Opt. a set of new snow physics
parametrizations are added on top of

ML-Std (see slide 2)
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Point evaluation at the ESM-SnowMIP sites: statistics of SWE and snow depth
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; « Bias (normalized) reduces from 30% to 6%
= * Main impact on SWE on sites characterized by
ML-Opt=0.550 sporadic melting; new physics mainly impacts SWE
during springtime
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Point evaluation: snow hydrology and impact on soil temperature at Col de Porte

Time-series (3 years) of show mass
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* Improved soil temperature due to better simulati
heat exchanges between the snowpack and soil

* The site evaluation shows the positive impact on snow
mass and runoff due to the improved representation of
sporadic melting episodes - better timing of final ablation

on of the
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Global impact on snow depth in land-surface only simulations

Land-surface only experiment forced with ERA5 data from 2010 to 2018

Evaluation is performed between 2014 and 2018 using standard insitu observations of snow depth
from synoptic stations (synop) in the Northern Hemisphere.
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Multi-layer scheme generally improves the simulation
of snow depth in the North Hem. over multiple years

Some degradation over Eurasian boreal forests and

East coast of Scandinavia
(@Ol



Impact of the multi-layer snow scheme in
coupled land-atmosphere forecasts
(deterministic and ensemble)
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Impact on coupled forecasts: evaluation of snow depth for winter and spring

Bias snow depth (cm
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Forecasts are initialised everyday at O0UTC
and run for 10 days. The horizontal resolution
used is ~25km with 137 vertical levels

The simulated snow depth at different lead
times for the period December 2016 to May
2017 is evaluated using standard insitu
observations of snow depth from synoptic
stations (synop) in the Northern Hemisphere

STATS (T+ 24) Single- Relative statistics

(cm) layer (EXP-CTL)/CTL
(CTRL) t+24

RMSE Winter 17.0 14.5 -14,7%

RMSE Spring 171 14.6 -14.6%

The positive snow depth bias is overall Relative statistics

reduced by the multi-layer snow scheme E;( :()—C(:(;I‘aL);lf(')l;L
(consistent with offline simulations).

However there are regions where the bias is | -13.7%

slightly increased (e.g. east Scandinavia). 14.4%




Impact on coupled forecasts: evaluation of internal snow processes at

Sodankyla, Finland

Thanks to the Finnish meteorological institute for observations

Time-height plots of internal snow temperature and density from coupled forecasts using the multi-layer snow scheme.
Forecasts in day 1 (t+0 to t+23 hours) are concatenated to create a continuous time series from 2013-12-01 to 2014-05-31

and observations (coloured dots)

Snow temperature from FC with snowML (contours)
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* Qualitative good agreement between
* Realistic representation of cold wave

propagation within the snowpack
(for instance in January 2014)

observed and simulated temperature.
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Snow density from FC with snowML (contours)
and observations (coloured dots)
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« Qualitative good agreement between observed
and simulated snow density in top snow layers

« Issues with the representation of density at the
bottom of snowpack (generally overestimated

by the model)
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Impact on coupled forecasts: evaluation of T2m at Sodankyla, Finland

Simulated 2-metre temperature at day 2 (t+24 to t+47 hours)
compared to observations, for winter 2016/2017
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* Improvements in the simulation of 2-metre temperature,
in particular of very cold episodes

* Improvement of the amplitude of the diurnal cycle
of T2m, mainly due to improvements in minimum temperatures

* Improvements are larger if only periods of clear-sky are
considered (both in model and observations)
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Impact on coupled forecasts: global evaluation of diurnal cycle of T2m

Forecasts at day 2, statistics for winter 2016/2017
Evaluation against synop
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Using snowML reduces the
positive bias of the daily
minimum 2-m temperature
by more than 1°C over
most of the high-latitude
regions
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Impact of snowML on daily
Tmax is more regional
dependent; positive impact
over North America and
west Eurasia

Daily Tmax
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Impact on coupled forecasts: focus on the impact in eastern Eurasia

Time series for February 2017 of the T2m and total cloud cover
averaged over stations between 120-E — 180-E and 50°N — 75°N.
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Impact on coupled ensemble forecasts: CRPS and spread of T2m

Ensemble forecasts (20 members) initialised everyday at 00UTC from 15t Dec 2017 to 28t Feb 2018 (Winter).
Evaluation using synop observations of 2-metre temperature as a function of forecast lead time.

Continuous ranked probability score (CRPS)
of 2-metre temperature in the Arctic region Ensemble spread of 2-metre temperature
(northward 60N) | over Arctic region (northward 60N)
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Conclusions

A new multi-layer snow scheme (ML) has been implemented in the ECMWEF Integrated Forecasting System
(IFS). The new scheme is an intermediate complexity show model computing the heat transfer through the
snowpack and the density and mass evolution (frozen and liquid) of each snow layer (up to 5 layers).

Evaluation over ESM-SnowMIP sites demonstrated the added value of the multi-layer snow scheme
for the representation of snow depth and snow mass.

At the global scale, the snow depth bias and RMSE are reduced by 40% and 14%, respectively,
using the multi-layer snow scheme both at Days 1 and 5 of the forecasts.

The use of a multi-layer snow scheme reduces the positive bias of the daily minimum 2-m temperature

by more than 1-C over most of the high-latitude regions at different lead times.

The improvement is due to the better description of heat transfer processes in the snowpack, which
improves the representation of the thermal decoupling between the surface and the atmosphere over snow.
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Thanks for your interest
and please contact me if you have any question!
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