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Moving from single-layer to multi-layer snow scheme in the ECMWF IFS model

Multi-layer and single-layer schemes share the same
• Snow cover parametrization
• Snow albedo parametrizations:

• Douville 95 for snow on low vegetation
• Look-up table for snow under high vegetation
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Figure 1. Schematics of the (a) single-layer and (b) multilayer snow schemes; (c) idealized time series of snow depth
accumulation and ablation (continuous line) with the vertical discretization used in the multilayer scheme (dashed
lines). The list of symbols used is also reported.

2.2.2. Changes in the Snow Physics Parametrizations
In addition to the structural aspects described in section 2.2.1, ML differs from SL also in the parametrization
of the following physical processes:

(I) The heat conductivity is parametrized using the formulation of Calonne et al. (2011) and taking into
account the water vapor diffusion effects, following Sun et al. (1999).

(II) Transmission of solar radiation decreases exponentially with depth, and it is parametrized using a
formulation adapted from Jordan (1991);

(III) Density variations due to wind transport (snowdrift) are taken into account, in addition to the other
compaction processes. This can be particularly effective for polar snow, for which snow temperature
is extremely low throughout the winter and compaction due to other processes is limited (Brun et al.,
1997; Decharme et al., 2016). Wind-driven compaction is parametrized using a mobility index combined
with a wind-driven compaction index, following Decharme et al. (2016).

(IV) The basal heat resistance (rso) is computed using a new physical formulation using the snow and soil
thermal conductivities.

The description of these parametrizations is reported in detail in Appendix A.

3. Evaluation of the Offline Simulations at the ESM-SnowMIP Sites
A key aspect of the evaluation of snow models (and more generally of land surface models) is to separate
the uncertainties and errors due to the forcing fields (e.g., the precipitation) to the ones associated to the
physical parametrizations of the model.
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Snow Multi-Layer (ML) also includes additional 
snow physics parametrizations:
• Prognostic liquid water content
• Shortwave radiation penetration and absorption
• New effective thermal conductivity
• Wind-induced densification of top snow layers

Single-layer (currently operational) Multi-layer (targeted operational in cycle 48r1)
Arduini et al., JAMES, 2019,
DOI: 10.1029/2019MS001725
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• Evaluation of the new snow scheme in land-surface only (offline) 
experiments, forced both using observations 

(point simulations) and reanalysis data (global simulations)
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ESM-SnowMIP:
• Nine snow supersites with observations of meteorological fields 

required to run land-surface models.
• At least 7 years (some sites more than 15 years) of 

observations for forcing and evaluation.
• Quick: less than 15 min to simulate more than 100 years 
• See Krinner et al., 2018 and Ménard et al., 2019 for more

information
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Two configurations of the multi-layer
snow scheme are tested in the offline
simulations at the ESM-SnowMIP sites:

1. ML-Std: the main differences with the
single-layer scheme (SL) are the
enhanced vertical discretization and
prognostic liquid water;

2. ML-Opt: a set of new snow physics
parametrizations are added on top of
ML-Std (see slide 2)

Extracted from Krinner et al. 2018

ESM-SnowMIP dataset for snow processes evaluation and testing

Average wintertime near-surface temperature vs
annual snowfall for the ESM-SnowMIP sites 



Evaluation on the ESM-SnowMIP sites indicates 
• Large variability of performance between sites
• Multi-layer snow scheme largely improves snow 

depth. Averaged over all sites, 
• the normalized root-mean-squared-error

(NRMSE) is reduced by more than 30%. 
• Bias (normalized) reduces from 30% to 6%

• Main impact on SWE on sites characterized by 
sporadic melting; new physics mainly impacts SWE 
during springtime

Point evaluation at the ESM-SnowMIP sites: statistics of SWE and snow depth
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Figure 2. Top row: summary statistics of normalized root-mean-square error (NRMSE) of snow water equivalent
(SWE) at each site for (a) December to February (DJF) and (b) March to May (MAM) for the offline experiments using
the single layer (SL, red), multilayer standard (ML-Std, green), and multilayer optimized snow scheme (ML-Opt, blue).
Top panel: boxplot of the distribution of yearly NRMSE; boxes have horizontal lines at the lower, median, and upper
quartile, and the vertical dashed lines extend from the minimum to maximum value. Bottom panel: total (computed for
all years) NRMSE at each site; the numbers in the boxes show the mean (for all sites) value of NRMSE for each
experiment. Bottom row: same as the top row, but for the snow depth (SD).

For each site, an offline control experiment using the current single-layer snow scheme (SL) is also per-
formed as benchmark. The land surface model runs with a time step equal to the frequency of the
meteorological forcing data set (hourly). The land surface model was spun up at each site by iterating the
entire time period twice to ensure the equilibrium of the soil fields used to initialize the simulation.

3.2. Temporal Evolution of Snow Depth and Mass
Yearly and total (computed for all years) NRMSE of snow water equivalent (SWE) and snow depth during
December to February (DJF) and March to May (MAM) seasons are shown in Figure 2. Due to the small
number of observations of SWE at BERMS sites, the latter have been excluded from the computation of the
NRMSE for SWE. For snow depth, only the data for Old Aspen are excluded because of the small num-
ber of observations at that site. Moreover, time series of SWE, snow depth, and density at selected sites for
representative seasons are shown in Figures 3 and 4, that best highlights the main features of the statistics
included in Figure 2.

Overall, ML-Std and ML-Opt show a general improvement in simulating SWE and snow depth compared
to SL. The main improvements are in snow depth, for which the total NRMSE, averaged over all sites, is
reduced by more than 30% for both ML experiments. Improvements in the simulation of SWE are not as
large, showing a seasonal dependency and some deterioration at the most complex mountainous sites. The
total NRMSE of SWE averaged over all sites during DJF is reduced by approximately 9% in ML-Opt and
ML-Std compared to SL. During MAM, it is reduced by 12.5% and 6.8% for ML-Opt and ML-Std, respectively,
demonstrating the importance of the added processes in ML-Opt to improve the representation of the energy
balance of the snowpack. However, annual statistics show different performances at the different sites in
terms of median and spread of the error (defined as the difference between minimum and maximum error),
demonstrating the importance of using multiple sites and seasons for model evaluation.
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Top panels: boxplot of the distribution of yearly
normalised-root-mean-square error (NRMSE, normalised
by standard deviation of observations). Bottom panels:
total (computed for all years) NRMSE at each site; the
numbers in the boxes show the mean (for all sites) value
of NRMSE for each experiment.



Point evaluation: snow hydrology and impact on soil temperature at Col de Porte

Mean annual cycle of soil temperature

Time-series (3 years) of snow mass 

Single-Layer
Multi-Layer

Single-layer

Multi-layer

Time-series (3 years) of snowmelt runoff

• The site evaluation shows the positive impact on snow 
mass and runoff due to the improved representation of 
sporadic melting episodes à better timing of final ablation

• Improved soil temperature due to better simulation of the
heat exchanges between the snowpack and soil

Observations Observations

Observations



Global impact on snow depth in land-surface only simulations
Land-surface only experiment forced with ERA5 data from 2010 to 2018 
Evaluation is performed between 2014 and 2018 using standard insitu observations of snow depth 
from synoptic stations (synop) in the Northern Hemisphere.

Reduced RMSE multi-layer Increased RMSE multi-layer

Snow depth RMSE difference ML-SL
for DJFMAM

Obs

Single-L
Multi-L

2015 Jan         2016 Jan       2017 Jan        2018 Jan  

North Hem. average

• Multi-layer scheme generally improves the simulation 
of snow depth in the North Hem. over multiple years

• Some degradation over Eurasian boreal forests and 
East coast of Scandinavia
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Impact of the multi-layer snow scheme in
coupled land-atmosphere forecasts

(deterministic and ensemble)
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STATS (T+ 24)
(cm)

Single-
layer 
(CTRL)

Multi-
layer
(EXP)

Relative statistics 
(EXP-CTL)/CTL 
t+24

RMSE Winter 17.0 14.5 -14,7%
RMSE Spring 17.1 14.6 -14.6%

Relative statistics 
(EXP-CTL)/CTL 
t+240 (day 10)
-13.7%

-14.4%

The positive snow depth bias is overall 
reduced by the multi-layer snow scheme 
(consistent with offline simulations). 
However there are regions where the bias is 
slightly increased (e.g. east Scandinavia).

The simulated snow depth at different lead
times for the period December 2016 to May
2017 is evaluated using standard insitu
observations of snow depth from synoptic
stations (synop) in the Northern Hemisphere

Impact on coupled forecasts: evaluation of snow depth for winter and spring

FC single-layer FC multi-layer

Winter absolute bias difference
[multi-layer]-[single-layer]

Spring absolute bias difference
[multi-layer]-[single-layer]

Forecasts are initialised everyday at 00UTC
and run for 10 days. The horizontal resolution
used is ~25km with 137 vertical levels



Thanks to the Finnish meteorological institute for observations

• Qualitative good agreement between 
observed and simulated temperature. 

• Realistic representation of cold wave
propagation within the snowpack
(for instance in January 2014)
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Figure 6. Time-height plot of snow temperature (top) and density (bottom) at Sodankylä from the model (background
colors) and observations (colored dots) for the 2013/2014 season. The snow depth from observations is superimposed
(gray line). Left column: Earth System Model-Snow Model Intercomparison Project (ESM-SnowMIP) offline
simulations using ML-Opt; Right column: coupled forecast simulation (FC-ML).

mid-May. However, the correct representation of phase changes within the soil would also require the tem-
poral evolution of the frozen soil moisture to be taken into account, which in the current formulation of
HTESSEL is only diagnosed from the soil temperature (Viterbo et al., 1999).

3.4. Evaluation of Snow Internal Processes
Figures 6a and 6c show time-height plots of snow temperature and density at Sodankylä, from observations
and from the offline ML-Opt experiment. Snow temperature is measured by an array of thermistors which
is covered by the snow during wintertime, while snow density profiles are measured every week or so by
digging a pit in the snow and weighing a snow sample of a certain volume (Essery et al., 2016; Leppänen
et al., 2016).

Quantitative comparison of internal snow temperature and density is difficult due to the difference between
the modeled and observed snow depth (Essery et al., 2016). The multilayer snow model captures the propaga-
tion of heat (cold) waves within the snowpack (see Figure 6a), which is a key feature of Arctic environments
during wintertime (Miller et al., 2017; Persson et al., 2017). A qualitative comparison of the modeled tem-
perature with observations at the same depth from the top snow surface suggests that the downward
propagation of this cold wave through the snowpack is well represented by the model. The temporal evo-
lution of snow density also looks realistic throughout the season (see Figure 6c), even though the snow
density of the bottom of the snowpack is overestimated by the model, particularly after February 2014,
consistent with the evolution of the bulk density shown in Figure 4a. This could be due to the relatively
simple parametrization of metamorphism implemented in ML, which does not allow complex snow crystal
evolution to be represented (e.g., depth hoar formation). However, it has also been shown that more phys-
ically complex snow models can overestimate the snow density of these types of snowpack close to the soil
interface (see for instance Essery et al., 2016).

4. Impact on Coupled FCs
The previous section demonstrates the improvements of the multilayer snow scheme in the representation
of snow processes at well instrumented sites in offline simulations forced with observations. In this section,
we evaluate the impact of the multilayer snow scheme at the global scale in coupled land-atmosphere
simulations.

Global 10-day FCs are performed for the December to June period, for three seasons: 2013/2014, 2016/2017,
2017/2018. Simulations are performed with the ECMWF IFS cycle 45r1, operational between July 2018 and
June 2019. The model uses an octahedral-reduced gaussian grid in the horizontal domain, with an equivalent

ARDUINI ET AL. 10

Journal of Advances in Modeling Earth Systems 10.1029/2019MS001725
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Impact on coupled forecasts: evaluation of internal snow processes at 
Sodankyla, Finland

Time-height plots of internal snow temperature and density from coupled forecasts using the multi-layer snow scheme. 
Forecasts in day 1 (t+0 to t+23 hours) are concatenated to create a continuous time series from 2013-12-01 to 2014-05-31

• Qualitative good agreement between observed 
and simulated snow density in top snow layers

• Issues with the representation of density at the 
bottom of snowpack (generally overestimated 
by the model)

Snow temperature from FC with snowML (contours)
and observations (coloured dots) 

Snow density from FC with snowML (contours)
and observations (coloured dots) 



Impact on coupled forecasts: evaluation of T2m at Sodankyla, Finland
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• Improvements in the simulation of 2-metre temperature,
in particular of very cold episodes

• Improvement of the amplitude of the diurnal cycle 
of T2m, mainly due to improvements in minimum temperatures

• Improvements are larger if only periods of clear-sky are 
considered (both in model and observations)

Simulated 2-metre temperature at day 2 (t+24 to t+47 hours) 
compared to observations, for winter 2016/2017 



Impact on coupled forecasts: global evaluation of diurnal cycle of T2m
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Forecasts at day 2, statistics for winter 2016/2017
Evaluation against synop

• Using snowML reduces the 
positive bias of the daily
minimum 2-m temperature 
by more than 1oC over 
most of the high-latitude
regions

• Impact of snowML on daily
Tmax is more regional  
dependent; positive impact 
over North America and 
west Eurasia



The increased amplitude of the diurnal
cycle can have a detrimental impact on 
the maximum 2-metre temperature, in 
particular over regions characterized by 
a preexisting positive bias of the daily
mean temperature. Sources of errors
can be overestimation of cloud cover, 
cloud phase, surface albedo and 
sensible heat fluxes.

Impact on coupled forecasts: focus on the impact in eastern Eurasia
Time series for February 2017 of the T2m and total cloud cover 
averaged over stations between 120◦E – 180◦E and 50◦N – 75◦N. 

o



Impact on coupled ensemble forecasts: CRPS and spread of T2m
Ensemble forecasts (20 members) initialised everyday at 00UTC from 1st Dec 2017 to 28th Feb 2018 (Winter). 
Evaluation using synop observations of 2-metre temperature as a function of forecast lead time.

Single layer
Multi layer

CRPS reduction 
~ 5%

2 4                       6                       8  

Continuous ranked probability score (CRPS)
of 2-metre temperature in the Arctic region 
(northward 60N)

Ensemble spread of 2-metre temperature 
over Arctic region (northward 60N) 

Lead time (days)
2                       4                      6                       8  

Lead time (days)

Single layer
Multi layer

CRPS in the Arctic region is reduced at all forecast lead 
times (~5% at day 4 and 5).

Substantial increase of the spread in T2m in the Arctic 
at all lead times (~25% at day 5).
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Conclusions
A new multi-layer snow scheme (ML) has been implemented in the ECMWF Integrated Forecasting System 
(IFS). The new scheme is an intermediate complexity snow model computing the heat transfer through the 
snowpack and the density and mass evolution (frozen and liquid) of each snow layer (up to 5 layers). 

Evaluation over ESM-SnowMIP sites demonstrated the added value of the multi-layer snow scheme
for the representation of snow depth and snow mass.

At the global scale, the snow depth bias and RMSE are reduced by 40% and 14%, respectively, 
using the multi-layer snow scheme both at Days 1 and 5 of the forecasts. 

The use of a multi-layer snow scheme reduces the positive bias of the daily minimum 2-m temperature 
by more than 1◦C over most of the high-latitude regions at different lead times. 
The improvement is due to the better description of heat transfer processes in the snowpack, which 
improves the representation of the thermal decoupling between the surface and the atmosphere over snow.
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• Thanks for your interest 
• and please contact me if you have any question!
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