

NOVEL EXPERIMENTAL METHODS FOR THE IDENTIFICATION OF ANOXIC MICRO-NICHES IN POROUS MEDIA

Giulia Ceriotti^a, Sergey M. Borisov^b & Pietro de Anna^a

^a Environmental Fluid Mechanics Lab, Institute of Earth Sciences, University of Lausanne, Switzerland. ^b Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria.

Introduction: Subsurface is an heterogeneous environment where soil, fluids, rocks and living organisms interact within it.

Multi-scale coupling of bacterial activity and water flow¹ may lead to the formation of persistent anoxic micro-niches in averagely welloxygenated media.

UNIL | Université de Lausanne

Institut des sciences de la Terre

For more info contact : giulia.ceriotti@unil.ch

Here, some communities might find a favorable habitat which boosts their activity² and thus leading to detectable macroscopic effects³.

Objective: Developing an experimental method combining microfluidics devices and transparent optical sensors for real-time observing and understanding anoxic micro-niches formation and dynamics across different spatial scales (for micron to meter scale).

Experimental Results:

Flow direction

Quantitative Analyses:

a) Pore Volume (PV) occupied by niches and biomass

a) Biomass and oxygen temporal correlation: The PV amount occupied by micro-niches evolves in time as a function of the biomass growth...

b) Biomass and oxygen spatial correlation: Profiles of O_2 and biomass computed along flow direction show lower oxygen for colonized sections of the medium.

c) Denser colonies form anoxic micro-niches:

c) *Pdfs* of O₂ conditional to biomass concentration 10 Biomass > 0.99Biomass < 0.99 $t = 23 h_{-}$ 250 $O_2 [\mu M]$

d) Anoxic micro-niches formation and colonies geometry

O₂ *pdf* computed for densely populated locations indicates that bacterial population density is an important factor controlling anoxic micro-niches formation.

d) Micro-niches formation links to colonies shape: In addition to density, the geometry of the colony is clearly correlated to the formation of niches. More rounded colonies (low R ratio values) are associated with lower oxygen values within the colony than more elongated or indented colonies (high R).

1 Or et al. (2007). DOI: <u>0.1016/j.advwatres.2006.05.025</u> 2 Kuzyakov et al. (2015). DOI: <u>10.1016/j.soilbio.2015.01.025</u>

3 Kravchenko et al. (2017). DOI: <u>10.1038/NGEO2963</u> 4 Borisov (2018) <u>10.1039/9781788013451-00001</u>