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Simulation study – Lorenz ‘96 system
• The Lorenz (1996) system exhibits regime-like behaviour, alternating between two regimes (regimes A and B) (Christensen et al., 2015).
• We implement the above BMA and NGR approaches in this system, with 𝑅 = 2 and 𝑤 𝑟 = 𝑀𝑟/𝑀.
• We predict the energy (E) in the system, using Normal distributions for all 𝑔 and 𝑔𝑟, but with regime-specific model parameters.
• Forecasts distributions are estimated and assessed using the continuous ranked-probability score (CRPS) and its skill-score (CRPSS). 
• Results are shown for NGR and Regime-dependent NGR (RDNGR) but the same results are seen for BMA and RDBMA

• RDNGR can improve upon conventional NGR by more than 5% for lead times between 5 and 10 days, and up to 17% in one of the regimes.
• Forecasts of extremely low values of E are significantly more accurate too (𝑝1 is the first percentile of the unconditional distribution of E) .

Regime-dependent statistical post-processing
• Let 𝒇 = (𝑓1, … , 𝑓𝑀) denote an ensemble forecast for a weather variable 𝑦, with 𝑀 exchangeable members. 
• Assume 𝑅 regimes have been identified. Let 𝑀𝑟 be the number of ensemble members predicting regime 𝑟 , for 𝑟 = 1,… , 𝑅.
• Let 𝑤(𝑟) represent a probability that the atmosphere resides in regime 𝑟 at the forecast validation time.
• One possible choice of 𝑤(𝑟) is the proportion of forecasts predicting regime 𝑟 at the validation time, 𝑀𝑟/𝑀.

Bayesian Model Averaging (BMA)
• BMA uses a mixture of forecast distributions specified for each 

ensemble member:
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• Ensemble members could be dressed using different parametric 
families, 𝑔, or model parameters, 𝜽, depending on the regime that 
they predict:
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Ensemble Model Output Statistics (EMOS)
• EMOS uses a heteroscedastic predictive distribution that depends 

on the ensemble 𝒇, typically through its mean and variance:
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• Regime-specific forecast distributions, 𝑔𝑟, and parameters, 𝜽𝒓, 
could be estimated for each regime:
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Weather regimes
• Statistical post-processing uses the behaviour of past forecasts to 

predict the errors that will be present in the current forecast. 
• Previous studies have found that model biases are affected by the 

prevailing atmospheric circulation.
• Forecasters therefore often manually adjust their forecast 

depending on the prevailing flow.
• The synoptic-scale flow can be explained by a small number of 

persistent and recurrent weather patterns, called regimes.
• Incorporating the circulation directly into post-processing can 

account for regime-dependent model errors.

Motivation
• Atmospheric predictability and model biases depend on the 

prevailing weather regime.
• If the seasonal cycle of model errors can be attributed to the 

occurrence of certain regimes then regime-analogues may be a 
more sensible choice of training data than only recent forecasts.

• Regimes can explain relationships between different variables and 
spatial locations so are sensible for use in multivariate approaches.

• Certain high impact weather events can be attributed to the 
occurrence of specific weather patterns.

• Using regime-dependent forecasts could improve 
predictions of extreme weather.


