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BACKGROUND

In 2015, Arcady Dyskin, Elena Pasternak and colleagues 
investigated an interesting unidirectional asymmetric 
friction that is created in a constraint environment by 
material anisotropy.

A block with inclined ribs in a constraint environment 
moves such that different normal stress is produced when 
the block moves in different directions.

Indeed, consider the figure on the right. When shear stress 
is in the direction shown (along the inclination of the ribs), 
the normal stress will be less than the normal stress in a case 
where shear stress is in the opposite direction (going against 
the inclined ribs).

It has been shown that the presence of asymmetric friction 
can cause instability at lower magnitudes of vibration.

(Bafekrpour et al. 2015)
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MOTIVATION

Consider the case when the surface contact contains regions where the 

symmetric axis is inclined to the contact area. This will mean there is a 

combination of asymmetric friction regions and regions with symmetric friction.

In this presentation, we will explore the effect on the dynamics of surface 

interaction when asymmetric friction is present.
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To investigate the dynamics during surface interaction, we consider a spring-
blocks model of the type proposed by Burridge and Knopoff (1967).

The model consist of multiple blocks – some blocks with asymmetric friction 
property and others with symmetric friction property – connected by springs. 
Each of these blocks are connected to the driving block (shown as the top 
surface in the diagram below) and can slide on the bottom surface.

DYNAMIC MODEL
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DYNAMIC MODEL
This model contains three mechanisms:

1. A loading mechanism (driving block) for the blocks by applying shear stress through the 

flat springs.

2. A mechanism (coiled and flat springs) to store elastic potential energy.

3. Stick-slip friction interaction between the blocks and the bottom surface.
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EQUATION OF MOTION
𝑚𝑗 ሷ𝑥𝑗 = 𝜇𝑗 𝑥𝑗+1 − 𝑥𝑗 − 𝜇𝑗−1 𝑥𝑗 − 𝑥𝑗−1 + 𝜆𝑗 𝑣𝑗,0 + 𝑣(𝑡) − 𝑥𝑗 + 𝜙𝑗 ሶ𝑥𝑗 , 𝑓𝑗

Where 𝑗 = 1 , 2 , … , 𝑁 ; 𝑥0 = 𝑥1 + 𝑎 𝑎𝑛𝑑 𝑥𝑁+1 = 𝑥𝑁 − 𝑎

𝑎 = 𝐼𝑛𝑡𝑒𝑟𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑗 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑗𝑡ℎ 𝑏𝑙𝑜𝑐𝑘

𝑥𝑗 = Displacement of jth block

𝜇𝑗 = 𝐶𝑜𝑖𝑙𝑒𝑑 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑗 + 1 𝑡ℎ 𝑡𝑜 𝑗𝑡ℎ 𝑏𝑙𝑜𝑐𝑘

𝜆𝑗 = 𝐹𝑙𝑎𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑏𝑙𝑜𝑐𝑘

v 𝑡 = 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘 𝑎𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡

𝑣𝑗,0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑎𝑡𝑠𝑝𝑟𝑖𝑛𝑔

𝑓𝑗 = 𝑆𝑢𝑚 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑜𝑖𝑙𝑒𝑑 𝑠𝑝𝑟𝑖𝑛𝑔𝑠 𝑎𝑛𝑑 𝑓𝑙𝑎𝑡 𝑠𝑝𝑟𝑖𝑛𝑔

𝜙𝑗 ሶ𝑥𝑗 , 𝑓𝑗 = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑗𝑡ℎ 𝑏𝑙𝑜𝑐𝑘

𝑓𝑗
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SIMPLIFICATION FOR THIS PRESENTATION

In this presentation, we shall consider the following simplification:

Mass of all the blocks being equal. (𝑚1 = 𝑚2 = ⋯ 𝑚𝑁 = 𝑚)

All coiled spring stiffness are equal. (𝜇1 = ⋯ = 𝜇𝑁 = 𝜇)

All flat spring stiffness are equal. (𝜆1 = ⋯ = 𝜆𝑁 = 𝜆)

The displacement of driving block has a linear and oscillating term.

𝑣 𝑡 = 𝑣𝑑 ∗ 𝑡 +
𝐺

𝜔𝑑
2 sin 𝜔𝑑𝑡
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NORMALISED EQUATION OF MOTION
𝑋𝑗

′′ = 𝐾2 𝑋𝑗+1 − 2𝑋𝑗 + 𝑋𝑗−1 + 𝑉𝑗,0 + 𝑉 𝑇 − 𝑋𝑗 + Φ(𝑋𝑗
′, 𝐹𝑗)

Where 𝑗 = 1 , 2 , … , 𝑁 ; 𝑋0 = 𝑋1 + 𝐴 𝑎𝑛𝑑 𝑋𝑁+1 = 𝑋𝑁 −A

𝑋𝑗 =
𝜆

𝑓𝑐
𝑥𝑗 ; 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑓𝑐 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑜𝑟𝑐𝑒 (𝑢𝑠𝑒𝑑 𝑡𝑜 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙)

𝑇 = 𝜔𝑝𝑡 ; 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑡𝑖𝑚𝑒

𝜔𝑝 =
𝜆

𝑚
; 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐾 =
𝜇

𝜆
; 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑜𝑖𝑙𝑒𝑑 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑡𝑜 𝑓𝑙𝑎𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠

𝑉𝑗,0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑎𝑡 𝑠𝑝𝑟𝑖𝑛𝑔

V 𝑇 = 𝑉𝑑 ∗ 𝑇 + 𝛼 sin 𝛽𝑇 ; 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘

𝑉𝑑 =
𝜔𝑝𝜆

𝑓𝑐
𝑣𝑑 ; 𝛼 =

𝐺𝜆

𝜔𝑑
2𝑓𝑐

; 𝛽 =
𝜔𝑑

𝜔𝑝

𝐹𝑗 = 𝑆𝑢𝑚 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑜𝑖𝑙𝑒𝑑 𝑠𝑝𝑟𝑖𝑛𝑔 𝑎𝑛𝑑 𝑓𝑙𝑎𝑡 𝑠𝑝𝑟𝑖𝑛𝑔

Φ 𝑋𝑗
′, 𝐹𝑗 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒

*Prime indicates derivative with respect to normalised time.

𝐹𝑗
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FRICTION CONSIDERATION

o Static and kinetic friction forces

o Opposes direction of forces 𝐹𝑗 when the block is static, and opposes direction of 

velocity

Symmetric Friction

o Equal friction forces in opposing directions

Asymmetric Friction

o Frictional force in the ‘hard’ direction is greater than the ‘easy’ direction.
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FRICTION MODEL

𝜙𝑗 ሶ𝑥𝑗 , 𝑓𝑗 =

−𝑚𝑖𝑛 𝑓𝑠
+ , 𝑓𝑗 , ሶ𝑥𝑗 = 0 𝑎𝑛𝑑 𝑓𝑗 > 0

−𝑓𝑑
+ − 𝑒 ሶ𝑥𝑗 , ሶ𝑥𝑗 > 0

𝑚𝑖𝑛 𝑓𝑠
− , 𝑓𝑗 , ሶ𝑥𝑗 = 0 𝑎𝑛𝑑 𝑓𝑗 < 0

𝑓𝑑
− − 𝑒 ሶ𝑥𝑗 , ሶ𝑥𝑗 < 0

Where 𝑓𝑠
+ = 𝑆𝑡𝑎𝑡𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑓𝑑
+ = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑓𝑠
− = 𝑆𝑡𝑎𝑡𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑓𝑑
− = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑒 = 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
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DIMENSIONLESS FRICTION MODEL

Φ𝑗 𝑋𝑗
′ , 𝐹𝑗 =

−𝑚𝑖𝑛 𝜂𝑠
+ , 𝐹𝑗 , 𝑋𝑗

′ = 0 𝑎𝑛𝑑 𝐹𝑗 > 0

−𝜂𝑑
+ − 𝐸 𝑋𝑗

′, 𝑋𝑗
′ > 0

𝑚𝑖𝑛 𝜂𝑠
− , 𝐹𝑗 , 𝑋𝑗

′ = 0 𝑎𝑛𝑑 𝐹𝑗 < 0

𝜂𝑑
− − 𝐸 𝑋𝑗

′, 𝑋𝑗
′ < 0

Where 𝜂𝑠
+ =

𝑓𝑠
+

𝑓𝑐
; 𝑆𝑡𝑎𝑡𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝜂𝑑
+ =

𝑓𝑑
+

𝑓𝑐
; 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝜂𝑠
− =

𝑓𝑠
−

𝑓𝑐
; 𝑆𝑡𝑎𝑡𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝜂𝑑
− =

𝑓𝑑
−

𝑓𝑐
; 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

E =
𝑒𝜔𝑝

𝑓𝑐
; 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
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SYMMETRIC 
FRICTION FORCE

Here we have a plot of the 
model for a symmetric friction 
block. 

The plot shows the friction force 
(y-axis) over velocity (x-axis; 
center being when velocity is 
zero).
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ASYMMETRIC 
FRICTION FORCE

Here we have a plot of the 
model for an asymmetric friction 
block, where the friction force is 
greater in the negative direction 
when compared to the positive 
direction.

The plot shows the friction force 
(y-axis) over velocity (x-axis; 
center being when velocity is 
zero).
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PARAMETRIC ANALYSIS 1

We will consider the case with the following parameters being kept constant:

➢ 𝑁 = 4 Number of blocks

➢ 𝛼 =
𝐺𝜆

𝜔𝑑
2𝑓𝑐

= 1 Normalised amplitude of driving block’s oscillation

➢ 𝛽 =
𝜔𝑑

𝜔𝑝
= 1 Normalised  driving block’s frequency

➢ 𝑉𝑑 =
𝜔𝑝𝜆

𝑓𝑐
𝑣𝑑 = 0 Normalised translational velocity of driving block

➢ 𝐾 =
𝜇

𝜆
= 1 Ratio of coiled spring stiffness to flat spring stiffness

➢ 𝐸 =
𝑒𝜔𝑝

𝑓𝑐
= 0 Normalised damping coefficient

We will also assume that static and dynamic friction are of the same magnitude in this 
analysis (𝜂𝑠 = 𝜂𝑑).
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PARAMETRIC ANALYSIS 1

Varied parameters:

➢ (Slide 17) All blocks having symmetric friction properties with 𝜂+ =
𝜂− = 1.

➢ (Slide 19) Alternating symmetric and asymmetric friction blocks. The 
symmetric friction mass has the same properties as before, while the 
asymmetric friction mass has 𝜂+ = 0.5 (easy direction; along inclined 
ribs) and 𝜂− = 2 (hard direction; against the inclined ribs).

➢ (Slide 21) First half of the blocks have asymmetric friction property, 
while the second half of the blocks have symmetric friction property.
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PARAMETRIC ANALYSIS 1: DISCUSSION (SLIDE 17)

Due to the definition of 𝛼 =
𝐺𝜆

𝜔𝑑
2f𝑐

, 𝛼 = 1 will ensure that mass with friction 

ratio of 𝜂 ≥ 1 will remain stationary

For this reason, it makes sense that in slide 17, none of the symmetric friction 
block (𝜂+ = 𝜂− = 1) moved.

In the next slide, we will introduce asymmetric friction properties for alternate 
blocks (𝑖 = 1, 3). 

© RUI XIANG WONG, ELENA PASTERNAK AND ARCADY DYSKIN. ALL RIGHTS RESERVED 18



© RUI XIANG WONG, ELENA PASTERNAK AND ARCADY DYSKIN. ALL RIGHTS RESERVED 19



PARAMETRIC ANALYSIS 1: DISCUSSION (SLIDE 19)

In slide 19, asymmetric friction was introduced as a property for alternate blocks 𝑖 = 1, 3 .

Here, the asymmetric friction block has 𝜂+ = 0.5 and 𝜂− = 2, enabling the asymmetric friction 
block to move in the positive direction but not in the negative direction. 

As the asymmetric block moves in the positive direction, the coiled spring connecting it to the 
symmetric friction block loads up. The force by the loaded coiled spring in combination with 
the force by the driving block enables the symmetric friction block to overcome friction and 
slip.

System can be seen to reach stability after some time; the loaded springs are able to keep 
the asymmetric friction block from displacing.

Now consider when first half of the blocks have asymmetric friction (𝑖 = 1, 2), while the next 
half have symmetric friction (𝑖 = 3, 4).
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PARAMETRIC ANALYSIS 1: DISCUSSION (SLIDE 21)

Comparing slides 19 and 21, we can see the asymmetric blocks that are connected 
together are able to displace further.

As the asymmetric block 2 moves, this loads the coiled spring connected to symmetric 
friction block 3.

Symmetric friction block 3 can be seen to overcome friction, while block 4 remains 
stationary during the first instance of instability.

During the second instance of instability block 3 and 4 can be seen to displace.

After some time, the system once again reaches stability

This shows that the instability caused by asymmetric friction regions of the surface can 
propagate to neighbouring regions.
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PARAMETRIC ANALYSIS 2
In parametric analysis 1, we considered when static and kinetic friction are equal in 
magnitude (𝜂𝑠 = 𝜂𝑑). Now, we will consider the case when dynamic friction is smaller than 
static friction (𝜂𝑠 > 𝜂𝑑); specifically, we will set 𝜂𝑑 = 0.8𝜂𝑠.

We will consider the same constant parameters as in parametric analysis 1: 

➢ 𝑁 = 4 Number of blocks

➢ 𝛼 =
𝐺𝜆

𝜔𝑑
2𝑓𝑐

= 1 Normalised amplitude of driving block’s oscillation

➢ 𝛽 =
𝜔𝑑

𝜔𝑝
= 1 Normalised  driving block’s frequency

➢ 𝑉𝑑 =
𝜔𝑝𝜆

𝑓𝑐
𝑣𝑑 = 0 Normalised translational velocity of driving block

➢ 𝐾 =
𝜇

𝜆
= 1 Ratio of coiled spring stiffness to flat spring stiffness

➢ 𝐸 =
𝑒𝜔𝑝

𝑓𝑐
= 0 Normalised damping coefficient
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PARAMETRIC ANALYSIS 2

Varied parameters:

➢ (Slide 25) All blocks having symmetric friction properties with 
𝜂𝑠

+ = 𝜂𝑠
− = 1 and 𝜂𝑑

+ = 𝜂𝑑
− = 0.8.

➢ (Slide 27) Alternating symmetric and asymmetric friction blocks. 
The symmetric friction mass has the same properties as before, 
while the asymmetric friction mass has 𝜂𝑠

+ = 0.5, 𝜂𝑑
+ = 0.4, 𝜂𝑠

− = 2
and 𝜂𝑑

− = 1.6.

➢ (Slide 29) First half of the blocks have asymmetric friction 
property, while the second half of the blocks have symmetric 
friction property.
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PARAMETRIC ANALYSIS 2: DISCUSSION (SLIDE 25)

As expected, the blocks remain stable when 𝛼 = 1 and 𝜂𝑠 = 1.

The force on the block cannot overcome the static friction, and so dynamic 
friction has no impact on this system.
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PARAMETRIC ANALYSIS 2: DISCUSSION (SLIDE 27)

In slide 27, the asymmetric friction block can overcome friction in the easy direction 
(𝜂𝑠

+ = 0.5 < 1).

When the asymmetric friction block displaces, it again loads up the coiled spring.

The force from the loaded coiled spring with the force from the driving block allows 
the symmetric friction block to overcome static friction.

When the symmetric friction block moves, it is subjected to dynamic friction, and so 
will reach a stable state when it can no longer overcome this dynamic friction.

Since dynamic friction is smaller than static friction, the symmetric friction block 
displaces further than it did in slide 19.

This causes the springs to be loaded such that the symmetric friction blocks can be 
seen to have reoccurring displacement overtime.
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PARAMETRIC ANALYSIS 2: DISCUSSION (SLIDE 29)

In slide 29, the asymmetric friction blocks that are connected together 𝑖 = 1, 2 , can 
displace further when compared to slide 27.

This loads the spring connecting asymmetric friction block 2 to symmetric friction block 
3.

This loaded spring in combination with the force from the driving block causes the 
symmetric friction block 3 to displace.

As the dynamic friction is smaller than the static friction, block 3 can displace further, 
which in turn causes block 4 to displace during the first occurrence of instability (as 
oppose to the second instance of instability observed in slide 21).

Again, due to the loaded springs, the symmetric friction blocks can be seen to 
continually displace over time.
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PARAMETRIC ANALYSIS 3
It follows from parametric analysis 2, that if the force by the driving block is not able to overcome 
the dynamic friction of the symmetric friction blocks, the system will eventually reach stability as it did 
in parametric analysis 1.

To test this, we shall set 𝛼 =
𝐺𝜆

𝜔𝑑
2f𝑐

= 0.8, which ensures that mass with friction ratio 𝜂𝑑 = 0.8 will 

remain stationary.

We will again consider the same constant parameters as the previous analysis (with exception of 𝛼):

➢ 𝑁 = 4 Number of blocks

➢ 𝛼 =
𝐺𝜆

𝜔𝑑
2𝑓𝑐

= 0.8 Normalised amplitude of driving block’s oscillation

➢ 𝛽 =
𝜔𝑑

𝜔𝑝
= 1 Normalised  driving block’s frequency

➢ 𝑉𝑑 =
𝜔𝑝𝜆

𝑓𝑐
𝑣𝑑 = 0 Normalised translational velocity of driving block

➢ 𝐾 =
𝜇

𝜆
= 1 Ratio of coiled spring stiffness to flat spring stiffness

➢ 𝐸 =
𝑒𝜔𝑝

𝑓𝑐
= 0 Normalised damping coefficient
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PARAMETRIC ANALYSIS 3

Varied parameters:

➢ (Slide 33) Alternating symmetric and asymmetric friction blocks. 

The symmetric (𝜂𝑠
+ = 𝜂𝑠

− = 1 and 𝜂𝑑
+ = 𝜂𝑑

− = 0.8) and asymmetric 

(𝜂𝑠
+ = 0.5, 𝜂𝑑

+ = 0.4, 𝜂𝑠
− = 2 and 𝜂𝑑

− = 1.6) friction mass has the 

same properties as in parametric analysis 2.

➢ (Slide 34) First half of the blocks have asymmetric friction 

property, while the second half of the blocks have symmetric 

friction property.
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PARAMETRIC ANALYSIS 3: DISCUSSION 
(SLIDES 33 AND 34)

The asymmetric friction blocks can be seen to displace (𝜂𝑠
+ = 0.5 < 0.8) in 

the positive direction, loading the coiled spring.

In slide 33, the symmetric block 2 can be seen to displace during the first 
occurrence of instability. The system can be seen to achieve stability after the 
first occurrence of instability.

In slide 34, the symmetric block 3 can be seen to displace during the second 
instance of instability, and the system achieve stability after this displacement.
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SUMMARY

Threshold of stability can be lowered if asymmetric friction regions are 

introduced through material anisotropy.

When the driving force is not able to overcome static friction but sufficient 

enough to exceed dynamic friction, introducing asymmetric friction can cause 

the system to be in an unstable state with reoccurring stick slip.
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