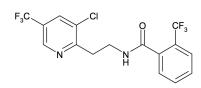


Mariana Vasconcelos Barroca¹, Zeev Ronen² and Gilboa Arye¹ (marianavbarroca@hotmail.com), (zeevrone@bgu.ac.il), (aryeg@bgu.ac.il)

- 1. French Associates Institute for Agriculture and Biotechnology of Drylands
- 2. Zuckerberg Institute for Water Research

Flow rate dependent transport of Fluopyram in saturated sandy soil



Introduction

- Velum® is a novel contact nematicide with Fluopyram (FL) as active ingredient.
- Knowledge on FL adsorption and transport characteristics in soils is essential for both agricultural and environmental considerations.

Objective

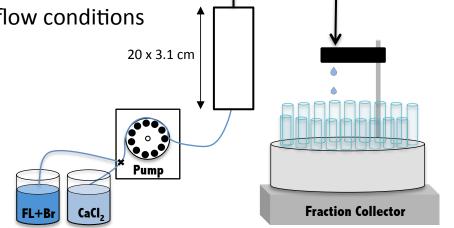
To quantify the transport characteristics of FL in a sandy soil from a non-cultivated area in the Arava region, Southern Israel.

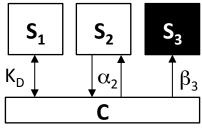
Material and Methods

Flow through soil column under saturated water flow conditions

Factors examined:

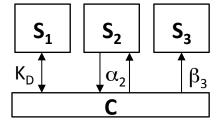
- (i) Pulse concentration
- (ii) Water flux
- (iii) Pulse size
- (iv) Continuous\Interrupted flow



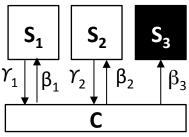

Table 1. Experimental conditions for the different soil columns experiments

Treatments	Q	Pulse duration	Input conc.	Applied Mass	$ ho_b$	
	ml min ⁻¹	PV	$mg L^{-1}$	mg	g cm ⁻³	
A	1	1	4	0.26	1.51	
В	1	1	8	0.51	1.50	
C	1	1	15	0.96	1.50	
D	0.3	3	8	1.55	1.51	
E	1	3	8	1.54	1.55	
F	4	3	8	1.54	1.52	

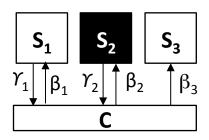
Modeling approches


Two-sites model

Reversible

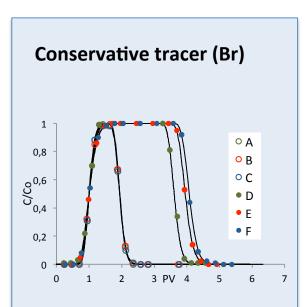

2 sites 2 rates-rev

Irreversible

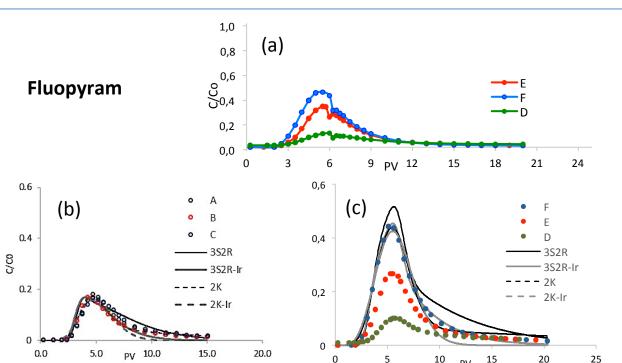


3 sites 2 rates-irr

Two-kinetic sites model


2 sites 4 rates-rev

2 sites 3 rates-irr


Results and disscusion

Bromide

Symmetrical pattern, regardless of the applied concentration of Fluopyram or flow rate; therefore, physical equilibrium can be assumed

- (a) Effect of flow perturbation: the decrease in FL concentration after flow perturbation, implied on low kinetics desorption.
- **(b)** Effect of concentration and pulse duration: No difference in the transport behavior were observed among concentrations. However, the short pulse resulted in lower peak concentration.
- **(c) Effect of flow rate:** The decrease in flux increased retention time, lowered peak concentration and enhanced tailing during leaching phase.

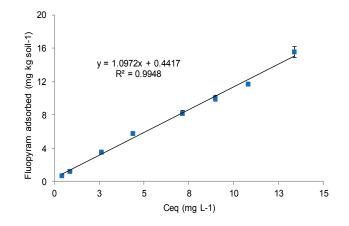

Results and disscusion

Table 2. Optimized parameters of the 2 Kinetic sites model, using 2 reversible sorption (S1, S2) sites and 4 rates

Treat.	AttS2	DetS2	AttS1	DetS1	R^2	RMSE
	$MM^{\text{-}1}$	$MM^{\text{-}1}$	$MM^{\text{-}1}$	MM^{-2}	(-)	(-)
Α	0,49	0,10	0,01	0,003	0,99	0,02
Б	0,038*	0,008	0,001	0,001		
В	0,49	0,11	0,01	0,002	0,99	0,03
0	0,048	0,011	0,001	0,000		
С	0,46	0,09	0,02	0,004	1,00	0,01
_	0,030	0,007	0,001	0,000		
D	0,09	0,02	0,01	0,000	0,98	0,03
_	0,026	0,006	0,000	0,000		
Е	0,46	0,10	0,02	0,001	0,99	0,02
-	0,061	0,013	0,001	0,000		
F	1,53	0,39	0,05	0,004	0,99	0,02
* 01	0,199	0,053	0,003	0,001		

^{*} Standard error

Equilibrium adsorption Isotherm $K_D = 1.1 (L/kg)$

Conclusions

- For the sandy soil examined, the transport of Fluopyram is affected by the flow rate and pulse duration but not by the input concentration below FL solubility (16 mg/l)
- Flow perturbation and not full recovery of FL, may indicates on low kinetics desorption mechanism
- Breakthrough curves could be fitted better with the Two kinetic site model, using 2 reversible sorption sites and 4 rates (2K)

Acknowledgments

The financial support for this study by Bayer is gratefully acknowledged

