

Quantifying the effects of interacting nutrient **cy**cles on terrestrial biosphere dynamics and their climate feedbacks

Elevated CO₂ increases plant growth but reduces soil C storage under N limiting conditions

Lucia Eder, Enrico Weber, Johannes Rousk, Marion Schrumpf & Sönke Zaehle

Lucia.Eder@bgc-jena.mpg.de

Summary

Question

1) Do plants allocate 'new' C into nutrient acquisition and if so, 2) how big is the nutrient gain for the C investment?

Methods

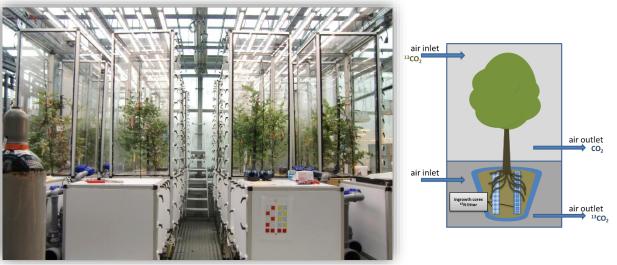
- Mesocosm experiment with 64 European beech trees
- \blacktriangleright Ambient vs. elevated CO₂
- Continuous ¹³CO₂ atmosphere
- ¹⁵N-labelled root litter in ingrowth cores: root vs. hyphal N uptake
- ~ 5 months duration

Aims

- Quantify whole plant C allocation and soil C allocation and their changes with eCO₂
- Quantify plant N uptake mechanisms

Conclusions

- YES, plants allocated more C belowground,
- **BUT** they did not gain significantly more N.
- + High variability between individuals!
- + Total C storage was not enhanced under eCO₂.



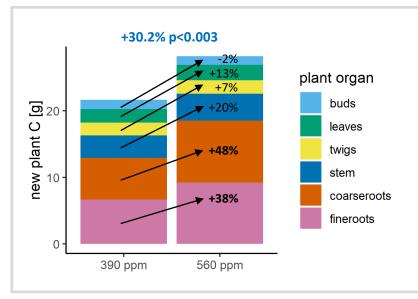
Method: ¹³C-¹⁵N eCO₂ mesocosm experiment

Experiment

- 64 Fagus sylvatica L. saplings planted in forest top soil plus 16 bare soils
- Elevated and ambient CO₂ levels (390/ 560 ppm).
- **Continuous** ¹³CO₂ atmosphere
- N uptake quantification via ¹⁵Nlabelled root litter in ingrowth cores AND ¹⁵N dilution
- June November 2016

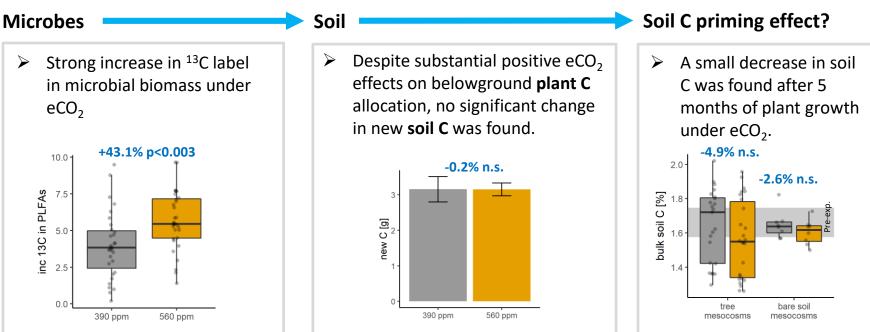
Analyses

- During the experiment: Gas fluxes (GPP, R_s)
- After the experiment: destructive harvest: biomass (dry mass, elemental analyses, isotopes), soil (elemental analyses, PLFAs, isotopes)



* C allocation (measured as 'new' C) was quantified by analyzing the isotopic composition of all plant compartments and mass balance

New plant C

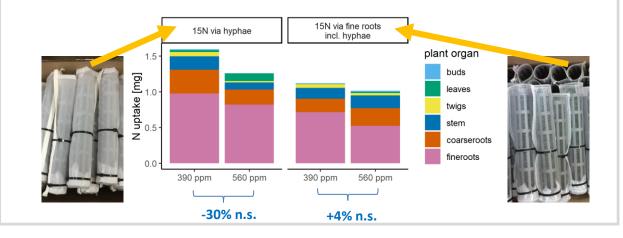


- Under eCO₂, we found strong increases of 'new' C allocation to roots in contrast to lower increases to other plant organs and a moderate increase in plant growth (+7%).
- eCO₂ induced a shift in C allocation patterns towards belowground resource investment from 57% of new C in roots under aCO₂ to 64% under eCO₂.

Belowground C allocation

Conclusion 1: These results suggest plant C investments into nutrient acquisition.

Lucia.Eder@bgc-jena.mpg.de

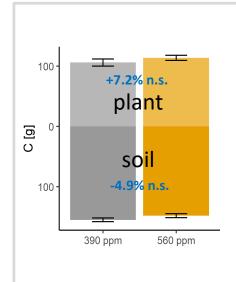


Plant N uptake*

* N uptake was quantified by analyzing the isotopic composition of all plant compartments **outside** of the ingrowth cores and mass balance

- > Low recovery of ¹⁵N from labelled litter in plant organs **except fine roots**
- > We did not find significant differences for
 - ➢ N uptake between eCO₂ and aCO₂
 - > N uptake between hyphal uptake and fine root uptake

Conclusion 2: We did not find evidence for increased plant N uptake.



Total C balance

Question:

How does increased C allocation to roots and soil affect total C pools?

- In these mesocosms, more C was stored in soils than in plants.
- Moderate increase in plant growth under eCO₂ resulted in more plant C storage under eCO₂.
- Under eCO₂, C storage shifted slightly towards plant C.
- The increase in plant C was balanced by a small decrease in soil C, resulting in no differences in C storage between aCO₂ and eCO₂.

Summary

Question

1) Do plants allocate 'new' C into nutrient acquisition and if so, 2) how big is the nutrient gain for the C investment?

Methods

- Mesocosm experiment with 64 European beech trees
- \blacktriangleright Ambient vs. elevated CO₂
- Continuous ¹³CO₂ atmosphere
- ¹⁵N-labelled root litter in ingrowth cores: root vs. hyphal N uptake
- ➤ ~ 5 months duration

Aims

- Quantify whole plant C allocation and soil C allocation and their changes with eCO₂
- Quantify plant N uptake mechanisms

Conclusions

- YES, plants allocated more C belowground,
- **BUT** they did not gain significantly more N.
- + High variability between individuals!
- + Total C storage was not enhanced under eCO₂.

